1 <?xml version="1.0" encoding="UTF-8"?>
3 * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
4 * Copyright (C) 2008 - INRIA
6 * This file must be used under the terms of the CeCILL.
7 * This source file is licensed as described in the file COPYING, which
8 * you should have received as part of this distribution. The terms
9 * are also available at
10 * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
13 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns5="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:id="numdiff" xml:lang="en">
15 <refname>numdiff</refname>
16 <refpurpose>numerical gradient estimation</refpurpose>
19 <title>Calling Sequence</title>
20 <synopsis>g=numdiff(fun,x [,dx])</synopsis>
23 <title>Arguments</title>
28 <para>an external, Scilab function or list. See below for calling
29 sequence, see also <link linkend="external">external</link> for
30 details about external functions.
37 <para>vector, the argument of the function
38 <literal>fun</literal>
45 <para>vector, the finite difference step. Default value is
46 <literal>dx=sqrt(%eps)*(1+1d-3*abs(x))</literal>
53 <para>vector, the estimated gradient</para>
59 <title>Description</title>
61 given a function <literal>fun(x)</literal> from
62 <literal>R^n</literal> to <literal>R^p</literal> computes the matrix
63 <literal>g</literal> such as
65 <programlisting role=""><![CDATA[
66 g(i,j) = (df_i)/(dx_j)
68 <para>using finite difference methods.
69 Uses an order 1 formula.
72 Without parameters, the function fun calling sequence is
73 <literal>y=fun(x)</literal>, and numdiff can be called as
74 <literal>g=numdiff(fun,x)</literal>. Else the function fun calling
75 sequence must be <literal>y=fun(x,param_1,pararm_2,..,param_q)</literal>.
76 If parameters <literal>param_1,param_2,..param_q</literal> exist then
77 <literal>numdiff</literal> can be called as follow
78 <literal>g=numdiff(list(fun,param_1,param_2,..param_q),x)</literal>.
82 <link linkend="derivative">derivative</link> with respect to numerical accuracy
83 issues and comparison between the two algorithms.
87 <title>Examples</title>
88 <programlisting role="example"><![CDATA[
89 // example 1 (without parameters)
90 // myfun is a function from R^2 to R : (x(1),x(2)) |--> myfun(x)
98 // The exact gradient (i.e derivate belong x(1) :first component and derivate belong x(2): second component) is
99 exact=[2*x(1)+x(2) x(1)]
101 //example 2 (with parameters)
102 // myfun is a function from R to R: x(1) |--> myfun(x)
103 // myfun contains 3 parameters, a, b, c
104 function f=myfun(x,a,b,c)
110 g2=numdiff(list(myfun,a,b,c),x)
112 // The exact gradient, i.e derivate belong x(1), is :
116 <refsection role="see also">
117 <title>See Also</title>
118 <simplelist type="inline">
120 <link linkend="optim">optim</link>
123 <link linkend="derivative">derivative</link>
126 <link linkend="external">external</link>