[differential_equations] bugs and tests fixed
[scilab.git] / scilab / modules / differential_equations / tests / unit_tests / ode.unix.dia.ref
1 // =============================================================================
2 // Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
3 // Copyright (C) 2007-2008 - INRIA
4 // Copyright (C) 2011 - DIGITEO - Cedric DELAMARRE
5 // Copyright (C) 2013 - Scilab Enterprises - Adeline CARNIS
6 //
7 //  This file is distributed under the same license as the Scilab package.
8 // =============================================================================
9 // <-- CLI SHELL MODE -->
10 warning("off")
11 ilib_verbose(0);
12 version = getversion("scilab");
13 // to check that ode works
14 // ---------- Simple one dimension ODE (Scilab function external)
15 // dy/dt=y^2-y sin(t)+cos(t), y(0)=0
16 function ydot=f(t,y),ydot=y^2-y*sin(t)+cos(t),endfunction
17 y0=0;t0=0;t=0:0.1:%pi;
18 y=ode(y0,t0,t,f);
19 assert_checkalmostequal(size(y), [1 32] , %eps, [], "matrix");
20 clear y;
21 clear t;
22 //*************************** function F and lsoda ********************************/
23 // create functions
24 cd TMPDIR;
25 CC=["void fex1(int* neq, double* t, double* y, double* ydot)"
26 "{"
27 "   ydot[0] = -0.04*y[0] + 1.0e+4*y[1]*y[2];"
28 "   ydot[2] = 3.0e+7*y[1]*y[1];"
29 "   ydot[1] = -ydot[0] - ydot[2];"
30 "}"];
31 mputl(CC,TMPDIR+"/fex1.c");
32 ilib_for_link("fex1","fex1.c",[],"c");
33 exec loader.sce;
34 C=[ "void fex2(int* neq, double* t, double* y, double* ydot)"
35 "{"
36 "   ydot[0] = y[4]*y[0] + y[5]*y[1]*y[2];"
37 "   ydot[2] = y[3]*y[1]*y[1];"
38 "   ydot[1] = -ydot[0] - ydot[2];"
39 "}"];
40 mputl(C,TMPDIR+"/fex2.c");
41 ilib_for_link("fex2","fex2.c",[],"c");
42 exec loader.sce;
43 clear f;
44 function ydot = f(t,yin)
45     ydot(1)=-0.040*yin(1) + 1.0D4*yin(2)*yin(3);
46     ydot(3)=3.0D7*yin(2)**2;
47     ydot(2)=-ydot(1) - ydot(3);
48 endfunction
49 function ydot = f1(t,yin,a,b,c)
50     ydot(1)=b*yin(1) + c*yin(2)*yin(3);
51     ydot(3)=a*yin(2)**2;
52     ydot(2)=-ydot(1) - ydot(3);
53 endfunction
54 function ydot = f2(t,yin,a)
55     ydot(1)=a(2)*yin(1) + a(3)*yin(2)*yin(3);
56     ydot(3)=a(1)*yin(2)**2;
57     ydot(2)=-ydot(1) - ydot(3);
58 endfunction
59 // init variables
60 y(1)    = 1;
61 y(2)    = 0;
62 y(3)    = 0;
63 t       = 0;
64 tout    = 0.4*exp((0:11)*log(10));
65 rtol    = 1.0d-4;
66 atol(1) = 1.0d-6;
67 atol(2) = 1.0d-10;
68 atol(3) = 1.0d-6;
69 // result provide by lsoda documentation.
70 // on a cdc-7600 in single precision.
71 //   at t =  4.0000e-01
72 resDoc(:,1) = [ 9.851712e-01 ; 3.386380e-05 ; 1.479493e-02 ];
73 //   at t =  4.0000e+00
74 resDoc(:,2) = [ 9.055333e-01 ; 2.240655e-05 ; 9.444430e-02 ];
75 //   at t =  4.0000e+01
76 resDoc(:,3) = [ 7.158403e-01 ; 9.186334e-06 ; 2.841505e-01 ];
77 //   at t =  4.0000e+02
78 resDoc(:,4) = [ 4.505250e-01 ; 3.222964e-06 ; 5.494717e-01 ];
79 //   at t =  4.0000e+03
80 resDoc(:,5) = [ 1.831975e-01 ; 8.941774e-07 ; 8.168016e-01 ];
81 //   at t =  4.0000e+04
82 resDoc(:,6) = [ 3.898730e-02 ; 1.621940e-07 ; 9.610125e-01 ];
83 //   at t =  4.0000e+05
84 resDoc(:,7) = [ 4.936363e-03 ; 1.984221e-08 ; 9.950636e-01 ];
85 //   at t =  4.0000e+06
86 resDoc(:,8) = [ 5.161831e-04 ; 2.065786e-09 ; 9.994838e-01 ];
87 //   at t =  4.0000e+07
88 resDoc(:,9) = [ 5.179817e-05 ; 2.072032e-10 ; 9.999482e-01 ];
89 //   at t =  4.0000e+08
90 resDoc(:,10) = [ 5.283401e-06 ; 2.113371e-11 ; 9.999947e-01 ];
91 //   at t =  4.0000e+09
92 resDoc(:,11) = [ 4.659031e-07 ; 1.863613e-12 ; 9.999995e-01 ];
93 //   at t =  4.0000e+10
94 resDoc(:,12) = [ 1.404280e-08 ; 5.617126e-14 ; 1.000000e+00 ];
95 // f as a string (dynamic link function)
96 res  = ode(y, t,tout, rtol, atol, "fex1");
97 // f as a list(string,...
98 if version(1) > 5 then
99     res2 = ode(y, t, tout, rtol, atol, list("fex2", 3.0d+7, -0.04, 1.0d+4));
100 end
101 // f as a macro
102 res3 = ode(y, t, tout, rtol, atol, f);
103 // f as a list(macro,...
104 res4 = ode(y, t, tout, rtol, atol, list(f1, 3.0d+7, -0.04, 1.0d+4));
105 args = [ 3.0d+7, -0.04, 1.0d+4 ];
106 res5 = ode(y, t, tout, rtol, atol, list(f2, args));
107 // f as a string (static link function)
108 res6 = ode(y, t,tout, rtol, atol, "fex");
109 // check results
110 assert_checkalmostequal(resDoc, res, 2d-7, [], "matrix"); // There are a little diff between resDoc and res
111 if version(1) > 5 then
112     assert_checkalmostequal(res, res2, 2d-7, [], "matrix"); // because results provides by lsoda
113 end
114 assert_checkalmostequal(res, res3, 2d-7, [], "matrix"); // documentation are in single precision.
115 assert_checkalmostequal(res, res4, 2d-7, [], "matrix");
116 assert_checkalmostequal(res, res5, 2d-7, [], "matrix");
117 assert_checkalmostequal(res, res6, 2d-7, [], "matrix");
118 //*************************** w iw ********************************/
119 tout2 = 0.4*exp(12*log(10));
120 tout3 = 0.4*exp((0:12)*log(10));
121 [yout w iw] = ode(y, t, tout, rtol, atol, f);
122 yout1 = ode(y, t, tout2, rtol, atol, f, w, iw);
123 yout2 = ode(y, t, tout3, rtol, atol, f);
124 assert_checkalmostequal(yout2(3*12+1:3*13), yout1, %eps, [], "matrix");
125 //*************************** Polynom ********************************/
126 //y(1) = 1;
127 //y(2) = 2;
128 //y(3) = 3;
129 //yy   = 1+2*%s+3*%s*%s;
130 //res  = ode(y, t,tout, rtol, atol, 'fex1');
131 //res6  = ode(yy, t, tout, rtol, atol, 'fex1');
132 //for i=1:12, assert_checkalmostequal(poly(res(:,i), "s", "coeff"),res6(i), %eps); end
133 //res7 = ode(yy, t, tout, rtol, atol, list('fex2', 3.0d+7, -0.04, 1.0d+4));
134 //for i=1:12, assert_checkequal(poly(res(:,i), "s", "coeff"), res7(i), %eps); end
135 //*************************** function Jac and lsode ********************************/
136 CC=["void jac(int* neq, double* t, double* y, int* mu, int* ml, double* j, int nj)"
137 "{"
138 "  j[0] = y[6]; "
139 "  j[1] = y[7]; "
140 "  j[2] = y[8]; "
141 "  j[3] = y[9]; "
142 "}"];
143 mputl(CC,TMPDIR+"/jac.c");
144 ilib_for_link("jac","jac.c",[],"c");
145 exec loader.sce;
146 CC=["void jac2(int* neq, double* t, double* y, int* mu, int* ml, double* j, int nj)"
147 "{"
148 "  j[0] = 10; "
149 "  j[1] = 0; "
150 "  j[2] = 0; "
151 "  j[3] = -1; "
152 "}"];
153 mputl(CC,TMPDIR+"/jac2.c");
154 ilib_for_link("jac2","jac2.c",[],"c");
155 exec loader.sce;
156 // ydot = A * y
157 C=[ "void fext(int* neq, double* t, double* y, double* ydot)"
158 "{"
159 "   ydot[0] = y[2]*y[0] + y[4]*y[1];"
160 "   ydot[1] = y[3]*y[0] + y[5]*y[1];"
161 "}"];
162 mputl(C,TMPDIR+"/fext.c");
163 ilib_for_link("fext","fext.c",[],"c");
164 exec loader.sce;
165 C=[ "void fext2(int* neq, double* t, double* y, double* ydot)"
166 "{"
167 "   ydot[0] = 10*y[0] + 0*y[1];"
168 "   ydot[1] = 0*y[0] + (-1)*y[1];"
169 "}"];
170 mputl(C,TMPDIR+"/fext2.c");
171 ilib_for_link("fext2","fext2.c",[],"c");
172 exec loader.sce;
173 clear f;
174 function ydot=f(t, y)
175     ydot=A*y
176 endfunction
177 function J=Jacobian(t, y)
178     J=A
179 endfunction
180 A=[10,0;0,-1];
181 y0=[0;1];
182 t0=0;
183 t=1;
184 res  = ode("stiff", y0, t0, t, f, Jacobian);
185 if version(1) > 5 then
186     res1 = ode("stiff", y0, t0, t, list("fext", 10, 0, 0,-1), list("jac", A));
187 end
188 res2 = ode("stiff", y0, t0, t, "fext2", "jac2");
189 res3 = ode("stiff", y0, t0, t, f, "jac2");
190 res4 = ode("stiff", y0, t0, t, "fext2", Jacobian);
191 assert_checkalmostequal(res, expm(A*t)*y0, 1.0D-7, [], "matrix");
192 if version(1) > 5 then
193     assert_checkalmostequal(res, res1, %eps, [], "matrix");
194 end
195 assert_checkalmostequal(res, res2, %eps, [], "matrix");
196 assert_checkalmostequal(res, res3, %eps, [], "matrix");
197 assert_checkalmostequal(res, res4, %eps, [], "matrix");
198 //*************************** discrete ********************************/
199 function yp=a_function(k,y)
200     yp=A*y+B*u(k);
201 endfunction
202 y1 = [1;2;3];
203 A  = diag([0.2,0.5,0.9]);
204 B  = [1;1;1];
205 u  = 1:10;
206 n  = 5;
207 y =ode("discrete", y1, 1, 1:n, a_function);
208 for i = 1:4, y1(:,i+1) = A * y1(:,i) + B * u(i); end
209 assert_checkalmostequal(y, y1, %eps, [], "matrix");
210 // Now y evaluates  at [y3,y5,y7,y9]
211 y1 = [1;2;3];
212 t  = 3:2:9;
213 y  = ode("discrete", y1, 1, t, a_function);
214 for i=1:9, y1(:,i+1) = A * y1(:,i) + B * u(i); end
215 y1 = y1(:,t);
216 assert_checkalmostequal(y, y1, %eps, [], "matrix");
217 //*************************** root ********************************/
218 y0=1;
219 ng=1;
220 C=[ "void fextern(int* neq, double* t, double* y, double* ydot)"
221 "{"
222 "int i = 0;"
223 "for( i = 0; i < *neq; i++)"
224 "   ydot[i] = y[i];"
225 "}"];
226 mputl(C,TMPDIR+"/fextern.c");
227 ilib_for_link("fextern","fextern.c",[],"c");
228 exec loader.sce;
229 clear f;
230 function ydot=f(t,y)
231     ydot=y;
232 endfunction
233 clear g;
234 // check rd result
235 function z=g(t,y)
236     z=y-2;
237 endfunction
238 [y,rd]=ode("root",y0,0,2,f,ng,g);
239 assert_checkequal( rd(2) <> 1 , %f);
240 clear g;
241 function z=g(t,y)
242     z=y-[2;2;33];
243 endfunction
244 [y,rd]=ode("root",y0,0,2,f,3,g);
245 assert_checkequal( rd(2) <> 1 , %f);
246 assert_checkequal( rd(3) <> 2 , %f);
247 clear g;
248 function z=g(t,y)
249     z=y-[2;2;2];
250 endfunction
251 [y,rd]=ode("root",y0,0,2,f,3,g);
252 assert_checkequal( rd(2) <> 1 , %f);
253 assert_checkequal( rd(3) <> 2 , %f);
254 assert_checkequal( rd(4) <> 3 , %f);
255 clear g;
256 function z=g(t,y)
257     z=y-[2;6;2;2];
258 endfunction
259 [y,rd]=ode("root",y0,0,2,f,4,g);
260 assert_checkequal( rd(2) <> 1 , %f);
261 assert_checkequal( rd(3) <> 3 , %f);
262 assert_checkequal( rd(4) <> 4 , %f);
263 // check y result
264 // result provide by lsodar documentation.
265 // on a cdc-7600 in single precision.
266 //   at t =  2.6400e-01
267 resDocRoot(:,1) = [ 9.899653e-01 ; 3.470563e-05 ; 1.000000e-02 ];
268 //        the above line is a root,  jroot =    0    1
269 //   at t =  4.0000e-01
270 resDoc(:,1) = [ 9.851712e-01 ; 3.386380e-05 ; 1.479493e-02 ];
271 //   at t =  4.0000e+00
272 resDoc(:,2) = [ 9.055333e-01 ; 2.240655e-05 ; 9.444430e-02 ];
273 //   at t =  4.0000e+01
274 resDoc(:,3) = [ 7.158403e-01 ; 9.186334e-06 ; 2.841505e-01 ];
275 //   at t =  4.0000e+02
276 resDoc(:,4) = [ 4.505250e-01 ; 3.222964e-06 ; 5.494717e-01 ];
277 //   at t =  4.0000e+03
278 resDoc(:,5) = [ 1.831975e-01 ; 8.941774e-07 ; 8.168016e-01 ];
279 //   at t =  4.0000e+04
280 resDoc(:,6) = [ 3.898730e-02 ; 1.621940e-07 ; 9.610125e-01 ];
281 //   at t =  4.0000e+05
282 resDoc(:,7) = [ 4.936363e-03 ; 1.984221e-08 ; 9.950636e-01 ];
283 //   at t =  4.0000e+06
284 resDoc(:,8) = [ 5.161831e-04 ; 2.065786e-09 ; 9.994838e-01 ];
285 //   at t =  2.0745e+07
286 resDocRoot(:,2) = [ 1.000000e-04 ; 4.000395e-10 ; 9.999000e-01 ];
287 //        the above line is a root,  jroot =    1    0
288 //   at t =  4.0000e+07
289 resDoc(:,9) = [ 5.179817e-05 ; 2.072032e-10 ; 9.999482e-01 ];
290 //   at t =  4.0000e+08
291 resDoc(:,10) = [ 5.283401e-06 ; 2.113371e-11 ; 9.999947e-01 ];
292 //   at t =  4.0000e+09
293 resDoc(:,11) = [ 4.659031e-07 ; 1.863613e-12 ; 9.999995e-01 ];
294 //   at t =  4.0000e+10
295 resDoc(:,12) = [ 1.404280e-08 ; 5.617126e-14 ; 1.000000e+00 ];
296 G=[ "void gex(int* neq, double* t, double* y, int* ng, double* gout)"
297 "{"
298 "gout[0] = y[0] - 1.0e-4;"
299 "gout[1] = y[2] - 1.0e-2;"
300 "}"];
301 mputl(G,TMPDIR+"/gex.c");
302 ilib_for_link("gex","gex.c",[],"c");
303 exec loader.sce;
304 y(1) = 1;
305 y(2) = 0;
306 y(3) = 0;
307 t0   = 0;
308 [yout1,rd1,w,iw] = ode("root", y, t0, tout, "fex1", 2, "gex");
309 assert_checkalmostequal(rd1(1), 2.64d-01, 1d-4);
310 [yout2,rd2,w,iw] = ode("root", y, t0, tout, "fex1", 2, "gex", w, iw);
311 assert_checkalmostequal(rd2(1), 2.0795776d+07, 4d-5);
312 err = execstr("[yout3,rd,w,iw] = ode(""root"", y, t0, tout, ""fex1"", 2, ""gex"", w, iw);","errcatch");
313       t n est pas entre tcur - hu (= r1) et tcur (=r2)
314       where r1 is :   0.2033607066275D+08   and r2 :   0.2109164231072D+08      
315 Illegal input detected (see printed message).
316 assert_checkequal( err == 0 , %f);
317 // check results
318 assert_checkalmostequal(resDocRoot(:,1), yout1, 2.0D-8, [], "matrix");
319 assert_checkalmostequal(resDocRoot(:,2), yout2(:,9), 2.0D-8, [], "matrix");
320 assert_checkalmostequal(resDoc(:,1:8), yout2(:,1:8), 2.0D-4, [], "matrix");
321 //*************************** rk/rkf/fix ********************************/
322 function ydot=functionF(t, y)
323     ydot=y^2-y*sin(t)+cos(t)
324 endfunction
325 y0 = 0;
326 t0 = 0;
327 t  = 0:0.1:%pi;
328 rk   = ode("rk",  y0, t0, t, functionF);
329 rkf  = ode("rkf", y0, t0, t, functionF);
330 fixx = ode("fix", y0, t0, t, functionF);
331 rkRes = [0.    0.09983341664683527    0.19866933079512300    0.29552020666153711 0.38941834230905709    0.47942553860493514    0.56464247339623352    0.64421768723947215 0.71735609090195429    0.78332690963060869    0.8414709848117728     0.89120736006615475 0.93203908597292051    0.96355818542403104    0.98544972999664104    0.99749498661376];
332 rkRes(17:32) = [0.99957360305287668    0.99166481046564392    0.97384763089330029    0.94630008770455387 0.90929742684492987    0.86320936667026738    0.80849640384312127    0.74570521220233155 0.67546318057873300    0.59847214413334937    0.51550137185246248    0.42737988026620155 0.33498815018939587    0.23924932924832210    0.14112000809477554    0.04158066246848785];
333 rkfRes = [0.    0.09983341667063099    0.19866933087782307    0.2955202068043328    0.38941834246046680     0.47942553864900261    0.56464247314940919    0.64421768645637856    0.71735608928892303      0.78332690686480611    0.84147098056308622    0.89120735401875306    0.93203907784361117      0.96355817497519225    0.98544971704249074    0.99749497101988072    0.99957358472991464];
334 rkfRes(18:32) = [    0.99166478935902302    0.97384760697150774    0.94630006094857066    0.90929739724116376     0.86320933420871493    0.80849636852157181    0.74570517403636893    0.67546313961625104      0.59847210047141619    0.51550132565379336    0.42737983177229999    0.33498809972769594      0.23924927723128114    0.14111995500988161    0.04158060885936282];
335 assert_checkalmostequal(rkRes, rk, %eps * 20, [], "matrix");
336 assert_checkalmostequal(rkfRes, rkf, %eps, [], "matrix");
337 assert_checkalmostequal(rkf, fixx, %eps, [], "matrix");
338 warning("on")