* Bug 16026 fixed: atanh() page and m2sci updated
[scilab.git] / scilab / modules / elementary_functions / help / ja_JP / trigonometry / atanh.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!--
3  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
4  * Copyright (C) 2008 - INRIA
5  * Copyright (C) 2012 - 2016 - Scilab Enterprises
6  * Copyright (C) 2019 - Samuel GOUGEON
7  *
8  * This file is hereby licensed under the terms of the GNU GPL v2.0,
9  * pursuant to article 5.3.4 of the CeCILL v.2.1.
10  * This file was originally licensed under the terms of the CeCILL v2.1,
11  * and continues to be available under such terms.
12  * For more information, see the COPYING file which you should have received
13  * along with this program.
14  *
15  -->
16 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink"
17           xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns5="http://www.w3.org/1999/xhtml"
18           xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook"
19           xmlns:scilab="http://www.scilab.org" xml:id="atanh" xml:lang="ja">
20     <refnamediv>
21         <refname>atanh</refname>
22         <refpurpose>双曲線逆正接</refpurpose>
23     </refnamediv>
24     <refsynopsisdiv>
25         <title>呼び出し手順</title>
26         <synopsis>t = atanh(x)</synopsis>
27     </refsynopsisdiv>
28     <refsection>
29         <title>引数</title>
30         <variablelist>
31             <varlistentry>
32                 <term>x, t</term>
33                 <listitem>
34                     <para>実数または複素数のベクトル/行列</para>
35                 </listitem>
36             </varlistentry>
37         </variablelist>
38     </refsection>
39     <refsection>
40         <title>説明</title>
41         <para>
42             ベクトル<varname>t</varname>の要素は,ベクトル<varname>x</varname>の対応する要素の双曲線逆正接となります.
43             実数関数の場合,定義域は,<literal>[-1,1]</literal>です.
44         </para>
45     </refsection>
46     <refsection>
47         <title>例</title>
48         <para>
49             With input real numbers:
50         </para>
51         <programlisting role="example"><![CDATA[
52 x = [-%inf -2 -1 -0.5 0 0.5 1 2 3 %inf];
53 [x ; atanh(tanh(x))]
54 atanh(x')
55  ]]></programlisting>
56     <screen><![CDATA[
57 --> [x ; atanh(tanh(x))]
58  ans  =
59   -Inf  -2.  -1.  -0.5   0.   0.5   1.   2.   3.   Inf
60   -Inf  -2.  -1.  -0.5   0.   0.5   1.   2.   3.   Inf
61
62 --> atanh(x')
63  ans  =
64    0.        + 1.5707963i
65   -0.5493061 + 1.5707963i
66   -Inf       + 0.i       
67   -0.5493061 + 0.i       
68    0.        + 0.i       
69    0.5493061 + 0.i       
70    Inf       + 0.i       
71    0.5493061 + 1.5707963i
72    0.3465736 + 1.5707963i
73    0.        + 1.5707963i
74 ]]></screen>
75         <para>
76             With input complex numbers:
77         </para>
78         <programlisting role="example"><![CDATA[
79 x = [-1-%i, -%i, 0, %i, %i+1];
80 [tanh(atanh(x)) ; atanh(tanh(x))]
81 atanh(x.')
82  ]]></programlisting>
83     <screen><![CDATA[
84 --> [x ; atanh(tanh(x))]
85  ans  =
86   -Inf  -2.  -1.  -0.5   0.   0.5   1.   2.   3.   Inf
87   -Inf  -2.  -1.  -0.5   0.   0.5   1.   2.   3.   Inf
88
89 --> atanh(x')
90  ans  =
91    0.        + 1.5707963i
92   -0.5493061 + 1.5707963i
93   -Inf       + 0.i       
94   -0.5493061 + 0.i       
95    0.        + 0.i       
96    0.5493061 + 0.i       
97    Inf       + 0.i       
98    0.5493061 + 1.5707963i
99    0.3465736 + 1.5707963i
100    0.        + 1.5707963i
101 ]]></screen>
102     </refsection>
103     <refsection role="see also">
104         <title>参照</title>
105         <simplelist type="inline">
106             <member>
107                 <link linkend="tanh">tanh</link>
108             </member>
109         </simplelist>
110     </refsection>
111     <refsection role="history">
112         <title>履歴</title>
113         <revhistory>
114             <revision>
115                 <revnumber>6.0</revnumber>
116                 <revdescription>
117                     <itemizedlist>
118                         <listitem>
119                             <literal>atanh(-1)</literal> is now always <literal>-Inf</literal>, and
120                             <literal>atanh(1)</literal> always <literal>Inf</literal>.
121                         </listitem>
122                         <listitem>
123                             For any real x>1, imag(atanh(x)) is now > 0.
124                         </listitem>
125                     </itemizedlist>
126                 </revdescription>
127             </revision>
128         </revhistory>
129     </refsection>
130 </refentry>