1778f00ce3c27b613ecc6f9ae5a8806464a28432
[scilab.git] / scilab / modules / linear_algebra / help / pt_BR / pencil / companion.xml
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!--
3  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
4  * Copyright (C) 2008 - INRIA
5  * 
6  * This file must be used under the terms of the CeCILL.
7  * This source file is licensed as described in the file COPYING, which
8  * you should have received as part of this distribution.  The terms
9  * are also available at    
10  * http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
11  *
12  -->
13 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns4="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:id="companion" xml:lang="en">
14     <refnamediv>
15         <refname>companion</refname>
16         <refpurpose>matriz companheira</refpurpose>
17     </refnamediv>
18     <refsynopsisdiv>
19         <title> Seqüência de Chamamento </title>
20         <synopsis>A=companion(p)</synopsis>
21     </refsynopsisdiv>
22     <refsection>
23         <title>Parâmetros</title>
24         <variablelist>
25             <varlistentry>
26                 <term>p</term>
27                 <listitem>
28                     <para>polinômio ou vetor de polinômios </para>
29                 </listitem>
30             </varlistentry>
31             <varlistentry>
32                 <term>A</term>
33                 <listitem>
34                     <para>matriz quadrada</para>
35                 </listitem>
36             </varlistentry>
37         </variablelist>
38     </refsection>
39     <refsection>
40         <title>Descrição</title>
41         <para>
42             Retorna uma matriz quadrada <literal>A</literal> com o polinômio
43             característico igual a <literal>p</literal> se <literal>p</literal> é
44             mônico. Se <literal>p</literal> não é mônico, o polinômio característico
45             de <literal>A</literal> é igual a <literal>p/c</literal> onde
46             <literal>c</literal> é o coeficiente do termo de maior grau em
47             <literal>p</literal>.
48         </para>
49         <para>
50             Se <literal>p</literal> é um vetor de polinômios mônicos,
51             <literal>A</literal> é diagonal em blocos, e o polinômio característico do
52             i-ésimo bloco é <literal>p(i)</literal>.
53         </para>
54     </refsection>
55     <refsection>
56         <title>Exemplos</title>
57         <programlisting role="example"><![CDATA[ 
58 s=poly(0,'s');
59 p=poly([1,2,3,4,1],'s','c')
60 det(s*eye()-companion(p))
61 roots(p)
62 spec(companion(p))
63  ]]></programlisting>
64     </refsection>
65     <refsection>
66         <title> Ver Também</title>
67         <simplelist type="inline">
68             <member>
69                 <link linkend="spec">spec</link>
70             </member>
71             <member>
72                 <link linkend="poly">poly</link>
73             </member>
74             <member>
75                 <link linkend="randpencil">randpencil</link>
76             </member>
77         </simplelist>
78     </refsection>
79 </refentry>