gspec was declared obsolete in Scilab 4, now removed
[scilab.git] / scilab / modules / linear_algebra / help / pt_BR / pencil / quaskro.xml
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!--
3  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
4  * Copyright (C) 2008 - INRIA
5  *
6  * Copyright (C) 2012 - 2016 - Scilab Enterprises
7  *
8  * This file is hereby licensed under the terms of the GNU GPL v2.0,
9  * pursuant to article 5.3.4 of the CeCILL v.2.1.
10  * This file was originally licensed under the terms of the CeCILL v2.1,
11  * and continues to be available under such terms.
12  * For more information, see the COPYING file which you should have received
13  * along with this program.
14  *
15  -->
16 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns5="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:id="quaskro" xml:lang="pt">
17     <refnamediv>
18         <refname>quaskro</refname>
19         <refpurpose>forma quasi-Kronecker</refpurpose>
20     </refnamediv>
21     <refsynopsisdiv>
22         <title> Seqüência de Chamamento </title>
23         <synopsis>
24             [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F)
25             [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A)
26             [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F,tol)
27             [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A,tol)
28         </synopsis>
29     </refsynopsisdiv>
30     <refsection role="parameters">
31         <title>Parâmetros</title>
32         <variablelist>
33             <varlistentry>
34                 <term>F</term>
35                 <listitem>
36                     <para>
37                         feixe de matrizes de reais <literal>F=s*E-A</literal>
38                         (<literal>s=poly(0,'s')</literal>)
39                     </para>
40                 </listitem>
41             </varlistentry>
42             <varlistentry>
43                 <term>E,A</term>
44                 <listitem>
45                     <para>duas matrizes reais de iguais dimensões </para>
46                 </listitem>
47             </varlistentry>
48             <varlistentry>
49                 <term>tol</term>
50                 <listitem>
51                     <para> número real (tolerância, valor padrão=1.d-10) </para>
52                 </listitem>
53             </varlistentry>
54             <varlistentry>
55                 <term>Q,Z</term>
56                 <listitem>
57                     <para>duas matrizes quadradas ortogonais </para>
58                 </listitem>
59             </varlistentry>
60             <varlistentry>
61                 <term>Qd,Zd</term>
62                 <listitem>
63                     <para>dois vetores de inteiros </para>
64                 </listitem>
65             </varlistentry>
66             <varlistentry>
67                 <term>numbeps</term>
68                 <listitem>
69                     <para>vetor de inteiros</para>
70                 </listitem>
71             </varlistentry>
72         </variablelist>
73     </refsection>
74     <refsection role="description">
75         <title>Descrição</title>
76         <para>Forma quasi-Kronecker de um feixe de matrizes:
77             <literal>quaskro</literal> computa duas matrizes ortogonais <literal>Q,
78                 Z
79             </literal>
80             que põem o feixe <literal>F=s*E -A</literal> na forma
81             triangular superior:
82         </para>
83         <screen><![CDATA[
84            | sE(eps)-A(eps) |        X       |      X     |
85            |----------------|----------------|------------|
86            |        O       | sE(inf)-A(inf) |      X     |
87 Q(sE-A)Z = |=================================|============|
88            |                                 |            |
89            |                O                | sE(r)-A(r) |
90  ]]></screen>
91         <para>As dimensões dos blocos são dadas por:</para>
92         <para>
93             <literal>eps=Qd(1) x Zd(1)</literal>, <literal>inf=Qd(2) x
94                 Zd(2)
95             </literal>
96             ,<literal>r = Qd(3) x Zd(3)</literal>
97         </para>
98         <para>
99             O bloco <literal>inf</literal> contém os modos infinitos do
100             feixe.
101         </para>
102         <para>
103             O bloco <literal>f</literal> contém os modos finitos do feixe
104         </para>
105         <para>A estrutura dos blocos epsilon é dada por:</para>
106         <para>
107             <literal>numbeps(1)</literal> = <literal>#</literal> de blocos eps
108             de tamanho 0 x 1
109         </para>
110         <para>
111             <literal>numbeps(2)</literal> = <literal>#</literal> de blocos eps
112             de tamanho 1 x 2
113         </para>
114         <para>
115             <literal>numbeps(3)</literal> = <literal>#</literal> de blocos eps
116             de tamanho 2 x 3 etc...
117         </para>
118         <para>A forma completa (de quatro blocos) de Kronecker é dada pela função
119             <literal>kroneck</literal> que chama a função <literal>quaskro</literal>
120             sobre o feixe (pertransposto) <literal>sE(r)-A(r)</literal>.
121         </para>
122         <para>O código é retirado de T. Beelen.</para>
123     </refsection>
124     <refsection role="see also">
125         <title> Ver Também</title>
126         <simplelist type="inline">
127             <member>
128                 <link linkend="kroneck">kroneck</link>
129             </member>
130             <member>
131                 <link linkend="gschur">gschur</link>
132             </member>
133             <member>
134                 <link linkend="spec">spec</link>
135             </member>
136         </simplelist>
137     </refsection>
138 </refentry>