734ae383a22bcfd73b01aa4fe9dd5f85daf9add8
[scilab.git] / scilab / modules / linear_algebra / help / pt_BR / pencil / quaskro.xml
1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <!--
3  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
4  * Copyright (C) 2008 - INRIA
5  * 
6  * Copyright (C) 2012 - 2016 - Scilab Enterprises
7  *
8  * This file is hereby licensed under the terms of the GNU GPL v2.0,
9  * pursuant to article 5.3.4 of the CeCILL v.2.1.
10  * This file was originally licensed under the terms of the CeCILL v2.1,
11  * and continues to be available under such terms.
12  * For more information, see the COPYING file which you should have received
13  * along with this program.
14  *
15  -->
16 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns5="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:id="quaskro" xml:lang="en">
17     <refnamediv>
18         <refname>quaskro</refname>
19         <refpurpose>forma quasi-Kronecker</refpurpose>
20     </refnamediv>
21     <refsynopsisdiv>
22         <title> Seqüência de Chamamento </title>
23         <synopsis>[Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F)
24             [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A)
25             [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F,tol)
26             [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A,tol)
27         </synopsis>
28     </refsynopsisdiv>
29     <refsection>
30         <title>Parâmetros</title>
31         <variablelist>
32             <varlistentry>
33                 <term>F</term>
34                 <listitem>
35                     <para>
36                         feixe de matrizes de reais <literal>F=s*E-A</literal>
37                         (<literal>s=poly(0,'s')</literal>)
38                     </para>
39                 </listitem>
40             </varlistentry>
41             <varlistentry>
42                 <term>E,A</term>
43                 <listitem>
44                     <para>duas matrizes reais de iguais dimensões </para>
45                 </listitem>
46             </varlistentry>
47             <varlistentry>
48                 <term>tol</term>
49                 <listitem>
50                     <para> número real (tolerância, valor padrão=1.d-10) </para>
51                 </listitem>
52             </varlistentry>
53             <varlistentry>
54                 <term>Q,Z</term>
55                 <listitem>
56                     <para>duas matrizes quadradas ortogonais </para>
57                 </listitem>
58             </varlistentry>
59             <varlistentry>
60                 <term>Qd,Zd</term>
61                 <listitem>
62                     <para>dois vetores de inteiros </para>
63                 </listitem>
64             </varlistentry>
65             <varlistentry>
66                 <term>numbeps</term>
67                 <listitem>
68                     <para>vetor de inteiros</para>
69                 </listitem>
70             </varlistentry>
71         </variablelist>
72     </refsection>
73     <refsection>
74         <title>Descrição</title>
75         <para>Forma quasi-Kronecker de um feixe de matrizes:
76             <literal>quaskro</literal> computa duas matrizes ortogonais <literal>Q,
77                 Z
78             </literal>
79             que põem o feixe <literal>F=s*E -A</literal> na forma
80             triangular superior:
81         </para>
82         <programlisting role=""><![CDATA[ 
83            | sE(eps)-A(eps) |        X       |      X     |
84            |----------------|----------------|------------|
85            |        O       | sE(inf)-A(inf) |      X     |
86 Q(sE-A)Z = |=================================|============|
87            |                                 |            |
88            |                O                | sE(r)-A(r) |
89  ]]></programlisting>
90         <para>As dimensões dos blocos são dadas por:</para>
91         <para>
92             <literal>eps=Qd(1) x Zd(1)</literal>, <literal>inf=Qd(2) x
93                 Zd(2)
94             </literal>
95             ,<literal>r = Qd(3) x Zd(3)</literal>
96         </para>
97         <para>
98             O bloco <literal>inf</literal> contém os modos infinitos do
99             feixe.
100         </para>
101         <para>
102             O bloco <literal>f</literal> contém os modos finitos do feixe
103         </para>
104         <para>A estrutura dos blocos epsilon é dada por:</para>
105         <para>
106             <literal>numbeps(1)</literal> = <literal>#</literal> de blocos eps
107             de tamanho 0 x 1
108         </para>
109         <para>
110             <literal>numbeps(2)</literal> = <literal>#</literal> de blocos eps
111             de tamanho 1 x 2
112         </para>
113         <para>
114             <literal>numbeps(3)</literal> = <literal>#</literal> de blocos eps
115             de tamanho 2 x 3 etc...
116         </para>
117         <para>A forma completa (de quatro blocos) de Kronecker é dada pela função
118             <literal>kroneck</literal> que chama a função <literal>quaskro</literal>
119             sobre o feixe (pertransposto) <literal>sE(r)-A(r)</literal>.
120         </para>
121         <para>O código é retirado de T. Beelen.</para>
122     </refsection>
123     <refsection>
124         <title> Ver Também</title>
125         <simplelist type="inline">
126             <member>
127                 <link linkend="kroneck">kroneck</link>
128             </member>
129             <member>
130                 <link linkend="gschur">gschur</link>
131             </member>
132             <member>
133                 <link linkend="gspec">gspec</link>
134             </member>
135         </simplelist>
136     </refsection>
137 </refentry>