1 <?xml version="1.0" encoding="UTF-8"?>
3 * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
4 * Copyright (C) 2008 - INRIA
6 * This file must be used under the terms of the CeCILL.
7 * This source file is licensed as described in the file COPYING, which
8 * you should have received as part of this distribution. The terms
9 * are also available at
10 * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
13 <refentry version="5.0-subset Scilab" xml:id="lmisolver" xml:lang="en"
14 xmlns="http://docbook.org/ns/docbook"
15 xmlns:xlink="http://www.w3.org/1999/xlink"
16 xmlns:svg="http://www.w3.org/2000/svg"
17 xmlns:ns4="http://www.w3.org/1999/xhtml"
18 xmlns:mml="http://www.w3.org/1998/Math/MathML"
19 xmlns:db="http://docbook.org/ns/docbook">
21 <pubdate>$LastChangedDate$</pubdate>
25 <refname>lmisolver</refname>
27 <refpurpose>linear matrix inequation solver</refpurpose>
31 <title>Calling Sequence</title>
33 <synopsis>[XLISTF[,OPT]] = lmisolver(XLIST0,evalfunc [,options])</synopsis>
37 <title>Parameters</title>
44 <para>a list of containing initial guess (e.g.
45 <literal>XLIST0=list(X1,X2,..,Xn)</literal>)</para>
53 <para>a Scilab function ("external" function with specific
56 <para>The syntax the function <literal>evalfunc</literal> must be as
59 <para><literal>[LME,LMI,OBJ]=evalfunct(X)</literal> where
60 <literal>X</literal> is a list of matrices, <literal>LME,
61 LMI</literal> are lists and <literal>OBJ</literal> a real
70 <para>a list of matrices (e.g.
71 <literal>XLIST0=list(X1,X2,..,Xn)</literal>)</para>
79 <para>optional parameter. If given, <literal>options</literal> is a
80 real row vector with 5 components
81 <literal>[Mbound,abstol,nu,maxiters,reltol]</literal></para>
88 <title>Description</title>
90 <para><literal>lmisolver</literal> solves the following problem:</para>
92 <para>minimize <literal>f(X1,X2,...,Xn)</literal> a linear function of
95 <para>under the linear constraints: <literal>Gi(X1,X2,...,Xn)=0</literal>
96 for i=1,...,p and LMI (linear matrix inequalities) constraints:</para>
98 <para><literal>Hj(X1,X2,...,Xn) > 0</literal> for j=1,...,q</para>
100 <para>The functions f, G, H are coded in the Scilab function
101 <literal>evalfunc</literal> and the set of matrices Xi's in the list X
102 (i.e. <literal>X=list(X1,...,Xn)</literal>).</para>
104 <para>The function <literal>evalfun</literal> must return in the list
105 <literal>LME</literal> the matrices <literal>G1(X),...,Gp(X)</literal>
106 (i.e. <literal>LME(i)=Gi(X1,...,Xn),</literal> i=1,...,p).
107 <literal>evalfun</literal> must return in the list <literal>LMI</literal>
108 the matrices <literal>H1(X0),...,Hq(X)</literal> (i.e.
109 <literal>LMI(j)=Hj(X1,...,Xn)</literal>, j=1,...,q).
110 <literal>evalfun</literal> must return in <literal>OBJ</literal> the value
111 of <literal>f(X)</literal> (i.e.
112 <literal>OBJ=f(X1,...,Xn)</literal>).</para>
114 <para><literal>lmisolver</literal> returns in <literal>XLISTF</literal>, a
115 list of real matrices, i. e. <literal>XLIST=list(X1,X2,..,Xn)</literal>
116 where the Xi's solve the LMI problem:</para>
118 <para>Defining <literal>Y,Z</literal> and <literal>cost</literal>
121 <para><literal>[Y,Z,cost]=evalfunc(XLIST)</literal>, <literal>Y</literal>
122 is a list of zero matrices, <literal>Y=list(Y1,...,Yp)</literal>,
123 <literal>Y1=0, Y2=0, ..., Yp=0</literal>.</para>
125 <para><literal> Z</literal> is a list of square symmetric matrices,
126 <literal> Z=list(Z1,...,Zq) </literal>, which are semi positive definite
127 <literal> Z1>0, Z2>0, ..., Zq>0</literal> (i.e.
128 <literal>spec(Z(j))</literal> > 0),</para>
130 <para><literal>cost</literal> is minimized.</para>
132 <para><literal>lmisolver</literal> can also solve LMI problems in which
133 the <literal>Xi's</literal> are not matrices but lists of matrices. More
134 details are given in the documentation of LMITOOL.</para>
138 <title>Examples</title>
140 <programlisting role="example"><![CDATA[
141 //Find diagonal matrix X (i.e. X=diag(diag(X), p=1) such that
142 //A1'*X+X*A1+Q1 < 0, A2'*X+X*A2+Q2 < 0 (q=2) and trace(X) is maximized
147 Q1 = -(A1'*Xs+Xs*A1+0.1*eye());
148 Q2 = -(A2'*Xs+Xs*A2+0.2*eye());
150 deff('[LME,LMI,OBJ]=evalf(Xlist)','X = Xlist(1); ...
151 LME = X-diag(diag(X));...
152 LMI = list(-(A1''*X+X*A1+Q1),-(A2''*X+X*A2+Q2)); ...
153 OBJ = -sum(diag(X)) ');
155 X=lmisolver(list(zeros(A1)),evalf);
163 <title>See Also</title>
165 <simplelist type="inline">
166 <member><link linkend="lmitool">lmitool</link></member>