1 <?xml version="1.0" encoding="UTF-8"?>
2 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" version="5.0-subset Scilab" xml:lang="en" xml:id="poly">
4 <pubdate>$LastChangedDate$</pubdate>
7 <refname>poly</refname>
8 <refpurpose>polynomial definition</refpurpose>
11 <title>Calling Sequence</title>
12 <synopsis>p=poly(a,vname, ["flag"])</synopsis>
15 <title>Arguments</title>
20 <para>matrix or real number</para>
26 <para>String, the symbolic variable name. If the string have more
27 than 4 characters only the first 4 are taken into account.
35 string ("roots", "coeff"), default value is <literal>"roots"</literal>.
42 <title>Description</title>
46 If <literal>a</literal> is a matrix,
50 <literal>p</literal> is the characteristic
51 polynomial i.e. <literal>determinant(x*eye()-a)</literal>, <literal>x</literal> being
52 the symbolic variable.
57 <term>If v is a vector,</term>
62 <literal>poly(v,"x",["roots"])</literal> is the polynomial
63 with <literal>roots</literal> the entries of <literal>v</literal> and
64 <literal>"x"</literal> as formal variable. (In this case,
65 <literal>roots</literal> and <literal>poly</literal> are inverse functions).
66 Note that Infinite roots gives zero highest degree coefficients.
71 <literal>poly(v,"x","coeff")</literal> creates the
72 polynomial with symbol <literal>"x"</literal> and with coefficients
73 the entries of <literal>v</literal> (<literal>v(1)</literal> is the constant term
74 of the polynomial). (Here <literal>poly</literal> and <literal>coeff</literal> are
83 <literal>s=poly(0,"s")</literal> is the seed for defining
84 polynomials with symbol <literal>"s"</literal>.
88 <title>Examples</title>
89 <programlisting role="example"><![CDATA[
95 h=(1+2*%s)/poly(1:4,'s','c')
98 <refsection role="see also">
99 <title>See Also</title>
100 <simplelist type="inline">
102 <link linkend="coeff">coeff</link>
105 <link linkend="roots">roots</link>
108 <link linkend="varn">varn</link>
111 <link linkend="horner">horner</link>
114 <link linkend="derivat">derivat</link>
117 <link linkend="matrices">matrices</link>
120 <link linkend="rational">rational</link>