* Bug #13139 fixed - Signal_processing: fft help page fixed 37/13337/1
Paul Bignier [Mon, 9 Dec 2013 08:11:30 +0000 (09:11 +0100)]
Fixed indentation error in French fft help page that caused a compilation error.

Change-Id: I4aea368811e1d146500bc8ec63aa4cf7531eab11

scilab/CHANGES_5.5.X
scilab/modules/signal_processing/help/en_US/transforms/fft.xml
scilab/modules/signal_processing/help/fr_FR/transforms/fft.xml

index e273f93..0119170 100644 (file)
@@ -302,6 +302,8 @@ Scilab Bug Fixes
 
 * Bug #13132 fixed - There were missing graduations when data_bounds interval was too small.
 
+* Bug #13139 fixed - fft help page fixed.
+
 
 Xcos Bug Fixes
 ==============
index 15515f0..b49fd6e 100644 (file)
@@ -3,19 +3,19 @@
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 1997   - INRIA
  * Copyright (C) 2012 - Serge Steer - INRIA
- * 
+ *
  * This file must be used under the terms of the CeCILL.
  * This source file is licensed as described in the file COPYING, which
  * you should have received as part of this distribution.  The terms
- * are also available at    
+ * are also available at
  * http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
  *
  -->
-<refentry xmlns="http://docbook.org/ns/docbook" 
-          xmlns:xlink="http://www.w3.org/1999/xlink" 
-          xmlns:svg="http://www.w3.org/2000/svg" 
-          xmlns:mml="http://www.w3.org/1998/Math/MathML" 
-          xmlns:db="http://docbook.org/ns/docbook" 
+<refentry xmlns="http://docbook.org/ns/docbook"
+          xmlns:xlink="http://www.w3.org/1999/xlink"
+          xmlns:svg="http://www.w3.org/2000/svg"
+          xmlns:mml="http://www.w3.org/1998/Math/MathML"
+          xmlns:db="http://docbook.org/ns/docbook"
           xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="fft">
     <refnamediv>
         <refname>fft</refname>
@@ -77,7 +77,6 @@
                     dimensions.  See the Description part for details.
                 </listitem>
             </varlistentry>
-            
             <varlistentry>
                 <term>dims</term>
                 <listitem>
@@ -85,7 +84,7 @@
                     vector of positive integers.  See the Description part for details.
                     <para>
                         Each element must be a divisor
-                        of the total number of elements of <literal>A</literal>. 
+                        of the total number of elements of <literal>A</literal>.
                     </para>
                     <para>
                         The product of the elements must be less than the total
                                         </listitem>
                                     </varlistentry>
                                 </variablelist>
-                                
                             </listitem>
                         </varlistentry>
                         <varlistentry>
                                     <literal>X=fft(A,1)</literal> or
                                     <literal>X=ifft(A)</literal>performs the inverse
                                     normalized transform, such
-                                    that<literal>A==ifft(fft(A))</literal>. 
+                                    that<literal>A==ifft(fft(A))</literal>.
                                 </para>
                                 <variablelist>
                                     <varlistentry>
                     </variablelist>
                 </listitem>
             </varlistentry>
-            
             <varlistentry>
                 <term>Long syntax for FFT along specified dimensions</term>
                 <listitem>
                                 For example, if <literal>A</literal> is a 3-D array
                                 <literal>X=fft(A,-1,2)</literal> is equivalent to:
                             </para>
-                            <programlisting role=""><![CDATA[ 
+                            <programlisting role=""><![CDATA[
 for i1=1:size(A,1)
   for i3=1:size(A,3)
     X(i1,:,i3)=fft(A(i1,:,i3),-1);
@@ -230,7 +227,7 @@ end
                             <para>
                                 and <literal>X=fft(A,-1,[1 3])</literal> is equivalent to:
                             </para>
-                            <programlisting role=""><![CDATA[ 
+                            <programlisting role=""><![CDATA[
 for i2=1:size(A,2)
   X(:,i2,:)=fft(A(:,i2,:),-1);
 end
@@ -263,7 +260,7 @@ end
                 <literal>B</literal> with dimensions <literal>n1</literal>,
                 ..., <literal>np</literal> is conjugate symmetric for the fft
                 if and only if <literal>B==conj(B([1 n1:-1:2],[1
-                    n2:-1:2],...,[1 np:-1:2])) 
+                    n2:-1:2],...,[1 np:-1:2]))
                 </literal>
                 .In such a case the
                 result <literal>X</literal> is real and an efficient specific
@@ -300,7 +297,7 @@ end
                         improves greatly the time computation when consecutives
                         calls (with same parameters) are performed.
                     </para>
-                    <para> 
+                    <para>
                         It is possible to go further in fft optimization using
                         <link linkend="get_fftw_wisdom">get_fftw_wisdom</link>, <link
              linkend="set_fftw_wisdom">set_fftw_wisdom</link> functions.
@@ -318,16 +315,16 @@ end
     <refsection>
         <title>Examples</title>
         <para>1-D fft</para>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 //Frequency components of a signal
 //----------------------------------
-// build a noised signal sampled at 1000hz  containing  pure frequencies 
+// build a noised signal sampled at 1000hz  containing  pure frequencies
 // at 50 and 70 Hz
 sample_rate=1000;
 t = 0:1/sample_rate:0.6;
 N=size(t,'*'); //number of samples
 s=sin(2*%pi*50*t)+sin(2*%pi*70*t+%pi/4)+grand(1,N,'nor',0,1);
-  
+
 y=fft(s);
 
 //s is real so the fft response is conjugate symmetric and we retain only the first N/2 points
@@ -337,7 +334,7 @@ clf()
 plot(f,abs(y(1:n)))
      ]]></programlisting>
         <para>2-D fft</para>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 ----------------------------------
 A = zeros(256,256);
 A(5:24,13:17) = 1;
@@ -346,7 +343,7 @@ set(gcf(),"color_map",jetcolormap(128));
 clf;grayplot(0:255,0:255,abs(X)')
      ]]></programlisting>
         <para>mupliple fft</para>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 //simple case, 3 1-D fft at a time
 N=2048;
 t=linspace(0,10,2048);
@@ -368,15 +365,14 @@ y=fft(A,-1,[2 4 5]);
 
 //equivalent (but less efficient code)
 y1=zeros(A);
-for i1=1:Dims(1) 
+for i1=1:Dims(1)
   for i3=1:Dims(3)
     ind=list(i1,:,i3,:,:);
     y1(ind(:))=fft(A(ind(:)),-1);
   end
 end
    ]]></programlisting>
-        
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 //Using explicit formula for  1-D discrete Fourier transform
 //------------------------------------------------
 function xf=DFT(x,flag);
@@ -395,7 +391,7 @@ endfunction
 //Comparison with the fast Fourier algorithm
 a=rand(1,1000);
 norm(DFT(a,1) - fft(a,1))
-norm(DFT(a,-1) - fft(a,-1)) 
+norm(DFT(a,-1) - fft(a,-1))
 
 timer();DFT(a,-1);timer()
 timer();fft(a,-1);timer()
index 49bb2ec..73b9394 100644 (file)
                                 </para>
                                 <variablelist>
                                     <varlistentry>
+                                        <term>mono-variable</term>
+                                        
                                         <listitem>
-                                            <term>mono-variable</term>
                                             <para>
                                                 Si <literal>A</literal> est un vecteur
                                                 <literal>X=fft(A,+1)</literal> ou