* Bug #13501 fixed - English help: Typo fixes 16/14816/6
A. Khorshidi [Mon, 7 Jul 2014 14:23:27 +0000 (16:23 +0200)]
Change-Id: Icb9fe4c973f00556b21fa5f57315648e7bc40783

13 files changed:
scilab/CHANGES_5.5.X
scilab/modules/cacsd/help/en_US/damp.xml
scilab/modules/elementary_functions/help/en_US/bitwise/bitxor.xml
scilab/modules/helptools/etc/images_md5.txt
scilab/modules/helptools/images/analpf_1.png
scilab/modules/helptools/images/window_1.png
scilab/modules/helptools/images/window_3.png
scilab/modules/polynomials/help/en_US/bezout.xml
scilab/modules/polynomials/help/en_US/diophant.xml
scilab/modules/signal_processing/help/en_US/filters/analpf.xml
scilab/modules/signal_processing/help/en_US/filters/window.xml
scilab/modules/signal_processing/help/ja_JP/filters/analpf.xml
scilab/modules/signal_processing/help/ja_JP/filters/window.xml

index 86c6b99..ccdec82 100644 (file)
@@ -138,6 +138,8 @@ Scilab Bug Fixes
 
 * Bug #13438 fixed - drawaxis did not return the handle of the created axis.
 
+* Bug #13501 fixed - Typos fixed in English help pages.
+
 
 Xcos Bug Fixes
 ==============
index ac3a38d..385ba93 100644 (file)
@@ -32,7 +32,7 @@
                 </listitem>
             </varlistentry>
             <varlistentry>
-                <term>P</term>
+                <term>R</term>
                 <listitem>
                     <para>
                         An array of real or complex floating point numbers.
@@ -52,7 +52,7 @@
                 <listitem>
                     <para>
                         vector of floating point numbers in increasing
-                        order: the natural pulsation in rd/s.
+                        order: the natural pulsation in rad/s.
                     </para>
                 </listitem>
             </varlistentry>
         <title>Description</title>
         <para>
             The denominator second order continuous time transfer function
-            with complex poles can be written as <literal>s^2+2*z*wn*s+wn^2</literal> where<literal>z</literal>
-            is the damping factor and <literal>wn </literal>the natural pulsation.
+            with complex poles can be written as <literal>s^2 + 2*z*wn*s + wn^2</literal> where <literal>z</literal>
+            is the damping factor and <literal>wn</literal> the natural pulsation.
         </para>
         <para>
             If <literal>sys</literal> is a continuous time system,
             <literal>[wn,z] = damp(sys)</literal> returns in <literal>wn</literal> the natural
-            pulsation <latex>\omega_n</latex>(in rd/s) and in <literal>z</literal> the damping factors
+            pulsation <latex>\omega_n</latex>(in rad/s) and in <literal>z</literal> the damping factors
             <latex>\xi</latex> of the poles of the linear dynamical system
             <literal>sys</literal>. The <literal>wn</literal> and
             <literal>z</literal> arrays are ordered according to the increasing
             If <literal>sys</literal> is a discrete time system
             <literal>[wn,z] = damp(sys)</literal> returns in
             <literal>wn</literal> the natural pulsation
-            <latex>\omega_n</latex>(in rd/s) and in <literal>z</literal> the
+            <latex>\omega_n</latex>(in rad/s) and in <literal>z</literal> the
             damping factors <latex>\xi</latex> of the continuous time
             equivalent poles of <literal>sys</literal>. The
             <literal>wn</literal> and <literal>z</literal> arrays are
             ordered according to the increasing pulsation order.
         </para>
         <para>
-            <literal>[wn,z] = damp(P)</literal>  returns in
+            <literal>[wn,z] = damp(P)</literal> returns in
             <literal>wn</literal> the natural pulsation
-            <latex>\omega_n</latex>(in rd/s) and in <literal>z</literal> the
+            <latex>\omega_n</latex>(in rad/s) and in <literal>z</literal> the
             damping factors <latex>\xi</latex> of the set of roots of the polynomials
-            stored in the <literal>P</literal> array.  If
+            stored in the <literal>P</literal> array. If
             <literal>dt</literal> is given and non 0, the roots are first
             converted to their continuous time equivalents.
             
             according to the increasing pulsation order.
         </para>
         <para>
-            <literal>[wn,z] = damp(R)</literal>  returns in
+            <literal>[wn,z] = damp(R)</literal> returns in
             <literal>wn</literal> the natural pulsation
-            <latex>\omega_n</latex>(in rd/s) and in <literal>z</literal> the
-            damping factors <latex>\xi</latex> of  the set of roots stored in the
-            <literal>R</literal> array. 
+            <latex>\omega_n</latex>(in rad/s) and in <literal>z</literal> the
+            damping factors <latex>\xi</latex> of the set of roots stored in the
+            <literal>R</literal> array.
             
             If <literal>dt</literal> is given and non 0, the roots are first
             converted to their continuous time equivalents.
     <refsection>
         <title>Examples</title>
         <programlisting role="example"><![CDATA[
-    s=%s;
-    num=22801+4406.18*s+382.37*s^2+21.02*s^3+s^4;
-    den=22952.25+4117.77*s+490.63*s^2+33.06*s^3+s^4
-    h=syslin('c',num/den);
+    s = %s;
+    num = 22801 + 4406.18*s + 382.37*s^2 + 21.02*s^3 + s^4;
+    den = 22952.25 + 4117.77*s + 490.63*s^2 + 33.06*s^3 + s^4
+    h = syslin('c', num/den);
     [wn,z] = damp(h)
     ]]></programlisting>
         <para>
             the frequency response of a second order system.
         </para>
         <programlisting role="example"><![CDATA[
-   s=%s;
-   wn=1;
+   s = %s;
+   wn = 1;
    clf();
-   Z=[0.95 0.7 0.5 0.3 0.13 0.0001];
+   Z = [0.95 0.7 0.5 0.3 0.13 0.0001];
    for k=1:size(Z,'*')
-     z=Z(k)
-     H=syslin('c',1+5*s+10*s^2,s^2+2*z*wn*s+wn^2);
-     gainplot(H,0.01,1)
-     p=gce();p=p.children;
-     p.foreground=k;
+     z = Z(k)
+     H = syslin('c', 1 + 5*s + 10*s^2, s^2 + 2*z*wn*s + wn^2);
+     gainplot(H, 0.01, 1)
+     p = gce();
+     p = p.children;
+     p.foreground = k;
    end
    title("$\frac{1+5 s+10 s^2}{\omega_n^2+2\omega_n\xi s+s^2}, \quad \omega_n=1$")
-   legend('$\xi='+string(Z)+'$')
-   plot(wn/(2*%pi)*[1 1],[0 70],'r') //natural pulsation
+   legend('$\xi = '+string(Z)+'$')
+   plot(wn/(2*%pi)*[1 1], [0 70], 'r') // Natural pulsation
    ]]></programlisting>
         <para>
             <scilab:image localized="true">
index dec2fd7..c5cf730 100644 (file)
@@ -1,15 +1,15 @@
 <?xml version="1.0" encoding="UTF-8"?>
 <!--
- * 
+ *
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 2011 - DIGITEO - Michael Baudin
- * 
+ *
  * This file must be used under the terms of the CeCILL.
  * This source file is licensed as described in the file COPYING, which
  * you should have received as part of this distribution.  The terms
- * are also available at    
+ * are also available at
  * http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt
- * 
+ *
  -->
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns3="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:id="bitxor" xml:lang="en">
     <refnamediv>
@@ -19,7 +19,7 @@
     <refsynopsisdiv>
         <title>Calling Sequence</title>
         <synopsis>
-            z = bitxor(x, y)            
+            z = bitxor(x, y)
         </synopsis>
     </refsynopsisdiv>
     <refsection>
@@ -76,7 +76,7 @@
 x = [0 1 0 1];
 y = [0 0 1 1];
 z = bitxor(x, y)
-expected = [0 1 1 1];
+expected = [0 1 1 0];
 
 // Compute the bitwise XOR of two matrices of integers.
 x = uint8([0 1 0 1]);
index e0ab127..31b6074 100644 (file)
@@ -626,7 +626,7 @@ acsc_1.png=4fd05d7d355266d821063c9a6c26abb0
 acscd_1.png=6e599765c5f8d0e189002d51f2d9068a
 acsch_1.png=15259a5eaa158abd0fd70e05b27d69eb
 addcolor_1.png=7e5f272c2700aafbd41da8efd8e9d8eb
-analpf_1.png=49761592911a102d7857d7e457b15f5c
+analpf_1.png=6d59d9510e91abd50fcfd04a4b129d93
 analyze_1.png=f618685a506715b35493fcc61fe78a25
 arl2_1.png=2aa2b498c2c79a58ef145a5e82349c2b
 arma_en_US_1.png=dc5f992783f4db687e23a65866dac816
@@ -1188,9 +1188,9 @@ wavread_1.png=7f4fa7fd3215e86c6beac1b99ed5c107
 whitecolormap_1.png=5c902a640b651c5ec7bcfdeba604e3c0
 wiener_1.png=7cf1c15abff7e9f0c2ca9bd45882a5c
 wigner_1.png=f775cca252e20dd1029d24f5cc6f430a
-window_1.png=f05b8e9a82a05f23882773da0b2c3f75
+window_1.png=4de5a4eee9a8a1ef039c8c9c8e65d6bb
 window_2.png=44cddcb55562ebc6e02da35aafb9c0c0
-window_3.png=7d418f2773c98bc31c261c6f5f112913
+window_3.png=5da80737d10d701654fe8d0b5b5bc703
 wintercolormap_1.png=149a68e3ce0fc6154a1b5f9ee7c63796
 xarc_1.png=e07703b3710275fc7e1403637b6eac7f
 xarc_2.png=cc873861271071e2fdc147d8fa82617c
index bc0470b..ed75ae8 100644 (file)
Binary files a/scilab/modules/helptools/images/analpf_1.png and b/scilab/modules/helptools/images/analpf_1.png differ
index 0ef59fd..05828d8 100644 (file)
Binary files a/scilab/modules/helptools/images/window_1.png and b/scilab/modules/helptools/images/window_1.png differ
index f3fd642..f72e9bb 100644 (file)
Binary files a/scilab/modules/helptools/images/window_3.png and b/scilab/modules/helptools/images/window_3.png differ
index d0b2086..fdbe231 100644 (file)
                     <para>two real polynomials or two integer scalars (type equal to 8)</para>
                 </listitem>
             </varlistentry>
+            <varlistentry>
+                <term>thegcd</term>
+                <listitem>
+                    <para>
+                        scalar of the same type as <literal>p1</literal> and <literal>p2</literal>
+                    </para>
+                </listitem>
+            </varlistentry>
+            <varlistentry>
+                <term>U</term>
+                <listitem>
+                    <para>
+                        <literal>2x2</literal> matrix of the same type as <literal>p1</literal> and <literal>p2</literal>
+                    </para>
+                </listitem>
+            </varlistentry>
         </variablelist>
     </refsection>
     <refsection>
         <title>Description</title>
         <para>
-            <literal>[thegcd,U]=bezout(p1,p2)</literal> computes GCD <literal>thegcd</literal> of <literal>p1</literal> and <literal>p2</literal> and in addition a (2x2)
+            <literal>[thegcd, U] = bezout(p1, p2)</literal> computes the GCD <literal>thegcd</literal> of <literal>p1</literal> and <literal>p2</literal>, and in addition a (2x2)
             unimodular matrix <literal>U</literal> such that:
         </para>
         <para>
-            <literal>[p1,p2]*U = [thegcd,0]</literal>
+            <literal>[p1 p2]*U = [thegcd 0]</literal>
         </para>
         <para>
             The lcm of <literal>p1</literal> and <literal>p2</literal> is given by:
     </refsection>
     <refsection>
         <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
-// polynomial case
-x=poly(0,'x');
-p1=(x+1)*(x-3)^5;p2=(x-2)*(x-3)^3;
-[thegcd,U]=bezout(p1,p2)
+        <programlisting role="example"><![CDATA[
+// Polynomial case
+x = poly(0, 'x');
+p1 = (x+1)*(x-3)^5;
+p2 = (x-2)*(x-3)^3;
+[thegcd,U] = bezout(p1, p2)
 det(U)
-clean([p1,p2]*U)
-thelcm=p1*U(1,2)
-lcm([p1,p2])
+clean([p1 p2]*U)
+thelcm = p1*U(1,2)
+lcm([p1 p2])
 
-// integer case
-i1=int32(2*3^5); i2=int32(2^3*3^2);
-[thegcd,U]=bezout(i1,i2)
-V=int32([2^2*3^5, 2^3*3^2,2^2*3^4*5]);
-[thegcd,U]=gcd(V)
+// Integer case
+i1 = int32(2*3^5);
+i2 = int32(2^3*3^2);
+[thegcd,U] = bezout(i1, i2)
+V = int32([2^2*3^5 2^3*3^2 2^2*3^4*5]);
+[thegcd,U] = gcd(V)
 V*U
 lcm(V)
  ]]></programlisting>
index 0cb6fe7..821a066 100644 (file)
@@ -39,7 +39,7 @@
             <varlistentry>
                 <term>x</term>
                 <listitem>
-                    <para>polynomial vector [x1;x2]</para>
+                    <para>polynomial vector [x1; x2]</para>
                 </listitem>
             </varlistentry>
         </variablelist>
     <refsection>
         <title>Description</title>
         <para>
-            <literal> diophant</literal> solves the bezout equation:
+            <literal>diophant</literal> solves the bezout equation:
         </para>
         <para>
             <literal>p1*x1+p2*x2=b</literal> with  <literal>p1p2</literal> a polynomial vector.
-            If the equation is not solvable
+            If the equation is not solvable, <literal>err = ||p1*x1 + p2*x2 - b|| / ||b||</literal>
         </para>
         <para>
-            else <literal>err=0</literal>
+            else <literal>err = 0</literal>.
         </para>
     </refsection>
     <refsection>
         <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
-s=poly(0,'s');p1=(s+3)^2;p2=(1+s);
-x1=s;x2=(2+s);
-[x,err]=diophant([p1,p2],p1*x1+p2*x2);
-p1*x1+p2*x2-p1*x(1)-p2*x(2)
+        <programlisting role="example"><![CDATA[
+s = poly(0, 's');
+p1 = (s+3)^2;
+p2 = (1+s);
+x1 = s;
+x2 = (2+s);
+[x,err] = diophant([p1 p2], p1*x1 + p2*x2);
+p1*x1 + p2*x2 - p1*x(1) - p2*x(2)
  ]]></programlisting>
     </refsection>
 </refentry>
index 4cb35cf..e17a655 100644 (file)
             <varlistentry>
                 <term>n</term>
                 <listitem>
-                    <para>positive integer : filter order</para>
+                    <para>positive integer: filter order</para>
                 </listitem>
             </varlistentry>
             <varlistentry>
                 <term>fdesign</term>
                 <listitem>
-                    <para>a string : that indicated the filter design method: </para>
+                    <para>a string: that indicated the filter design method: </para>
                     <itemizedlist mark="bullet">
                         <listitem>
                             <para>"butt" is for  Butterworth filter.</para>
@@ -60,7 +60,7 @@
                                 For "cheb2" filters only <literal>rp(2)</literal>
                                 is used. The stopband ripple is between
                                 <literal>0</literal> and
-                                <literal>rp(2)</literal>. 
+                                <literal>rp(2)</literal>.
                             </para>
                         </listitem>
                         <listitem>
@@ -70,7 +70,7 @@
                                 ripple is between <literal>1-rp(1)</literal> and
                                 <literal>1</literal> while the stopband ripple is
                                 between <literal>0</literal> and
-                                <literal>rp(2)</literal>. 
+                                <literal>rp(2)</literal>.
                             </para>
                         </listitem>
                     </itemizedlist>
@@ -79,7 +79,7 @@
             <varlistentry>
                 <term>omega</term>
                 <listitem>
-                    <para>cut-off frequency of low-pass filter in rd/s</para>
+                    <para>cut-off frequency of low-pass filter in rad/s</para>
                 </listitem>
             </varlistentry>
             <varlistentry>
@@ -87,8 +87,7 @@
                 <listitem>
                     <para>
                         the rational polynomial transfer function (see <link linkend="syslin">syslin</link>). Is is
-                        <literal>hs=gain*syslin("c",real(poly(zers,"s")),
-                            real(poly(pols,"s")))
+                        <literal>hs = gain*syslin("c", real(poly(zers, "s")), real(poly(pols, "s")))
                         </literal>
                     </para>
                 </listitem>
     </refsection>
     <refsection>
         <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
-//Evaluate magnitude response of the filter
-fcut=5; //hz
-n=7;//filter order
-hc1=analpf(n,'cheb1',[0.1 0],fcut*2*%pi);
-hc2=analpf(n,'cheb2',[0 0.1],fcut*2*%pi);
-he=analpf(n,'ellip',[0.1 0.1],fcut*2*%pi);
-hb=analpf(n,'butt',[0 0],fcut*2*%pi);
-hc1.dt='c';hc2.dt='c';he.dt='c';hb.dt='c';
+        <programlisting role="example"><![CDATA[
+// Evaluate magnitude response of the filter
+fcut = 5; //hz
+n = 7; // Filter order
+hc1 = analpf(n, 'cheb1', [0.1 0], fcut*2*%pi);
+hc2 = analpf(n, 'cheb2', [0 0.1], fcut*2*%pi);
+he = analpf(n, 'ellip', [0.1 0.1], fcut*2*%pi);
+hb = analpf(n, 'butt', [0 0], fcut*2*%pi);
+hc1.dt = 'c';
+hc2.dt = 'c';
+he.dt = 'c';
+hb.dt = 'c';
 clf();
-[fr, hf]=repfreq(hc1,0,15);
-plot(fr,abs(hf),'b')
-[fr, hf]=repfreq(hc2,0,15);
-plot(fr,abs(hf),'y')
-[fr, hf]=repfreq(he,0,15);
+[fr, hf] = repfreq(hc1, 0, 15);
+plot(fr, abs(hf), 'b')
+[fr, hf] = repfreq(hc2, 0, 15);
+plot(fr,abs(hf),'g')
+[fr, hf] = repfreq(he, 0, 15);
 plot(fr,abs(hf),'r')
-[fr, hf]=repfreq(hb,0,15);
-plot(fr,abs(hf),'c')
+[fr, hf] = repfreq(hb, 0, 15);
+plot(fr, abs(hf), 'c')
 
-legend(["Chebyshev I","Chebyshev II","Elliptic","Butterworth"]);
+legend(["Chebyshev I", "Chebyshev II", "Elliptic", "Butterworth"]);
 xgrid()
 xlabel("Frequency (Hz)")
 ylabel("Gain")
@@ -184,7 +186,7 @@ title("Analog filters of order 7")
                 [fr, hf]=repfreq(hc1,0,15);
                 plot(fr,abs(hf),'b')
                 [fr, hf]=repfreq(hc2,0,15);
-                plot(fr,abs(hf),'y')
+                plot(fr,abs(hf),'g')
                 [fr, hf]=repfreq(he,0,15);
                 plot(fr,abs(hf),'r')
                 [fr, hf]=repfreq(hb,0,15);
index 3c74ea4..f6320f0 100644 (file)
@@ -32,8 +32,8 @@
                         width and  <literal>df</literal> rules the side lobe height
                         (<literal>df&gt;0</literal>).
                     </para>
-                    <para>Only one of these two value should be specified the other one
-                        should set equal to a nonpositive value.
+                    <para>Only one of these two value should be specified, the other one
+                        must be equal to a nonpositive value.
                     </para>
                 </listitem>
             </varlistentry>
         <title>Examples</title>
         <programlisting role="example"><![CDATA[
     clf()
-    N=24;
-    whm=window('hm',N);//Hamming window
-    wkr=window('kr',N,6);//Hamming Kaiser window
-    wch=window('ch',N,[0.005,-1]);//Chebychev window
-    //plot the window profile
-    subplot(121);plot((1:N)',[whm;wkr;wch]')
-    set(gca(),'grid',[1 1]*color('gray'))
+    N = 24;
+    whm = window('hm', N); // Hamming window
+    wkr = window('kr', N, 6); // Hamming Kaiser window
+    wch = window('ch', N, [0.005 -1]); // Chebychev window
+
+    // Plot the window profile
+    subplot(121);
+    plot((1:N)', [whm; wkr; wch]')
+    set(gca(), 'grid', [1 1]*color('gray'))
     xlabel("n")
     ylabel("w_n")
     title(gettext("Profile plot"))
-    //plot the magnitude of the frequency responses
-    n=256;
-    [Whm,fr]=frmag(whm,n);
-    [Wkr,fr]=frmag(wkr,n);
-    [Wch,fr]=frmag(wch,n);
-    subplot(122);plot(fr',20*log10([Whm;Wkr;Wch]'))
-    set(gca(),'grid',[1 1]*color('gray'))
-    xlabel(gettext("Pulsation (rd/s)"))
+
+    // Plot the magnitude of the frequency responses
+    n = 256;
+    [Whm,fr] = frmag(whm, n);
+    [Wkr,fr] = frmag(wkr, n);
+    [Wch,fr] = frmag(wch, n);
+    subplot(122);
+    plot(fr', 20*log10([Whm; Wkr; Wch]'))
+    set(gca(), 'grid', [1 1]*color('gray'))
+    xlabel(gettext("Pulsation (rad/s)"))
     ylabel(gettext("Magnitude (dB)"))
-    legend(["Hamming N=24";"Kaiser N=24, Beta=6";"Chebychev N=24, dp=0.005"]);
+    legend(["Hamming N=24"; "Kaiser N=24, Beta=6"; "Chebychev N=24, dp=0.005"]);
     title(gettext("Magnitude plot"))
     ]]></programlisting>
         <para>
                 [Wch,fr]=frmag(wch,n);
                 subplot(122);plot(fr',20*log10([Whm;Wkr;Wch]'))
                 set(gca(),'grid',[1 1]*color('gray'))
-                xlabel(gettext("Pulsation (rd/s)"))
+                xlabel(gettext("Pulsation (rad/s)"))
                 ylabel(gettext("Magnitude (dB)"))
                 legend(["Hamming N=24";"Kaiser N=24, Beta=6";"Chebychev N=24, dp=0.005"]);
                 title(gettext("Magnitude plot"))
         </para>
         <programlisting role="example"><![CDATA[
     clf()
-    N=140;
-    w1=window('kr',N,1);
-    w2=window('kr',N,2);
-    w4=window('kr',N,4);
-    w8=window('kr',N,8);
-    w16=window('kr',N,16);
+    N = 140;
+    w1 = window('kr', N, 1);
+    w2 = window('kr', N, 2);
+    w4 = window('kr', N, 4);
+    w8 = window('kr', N, 8);
+    w16 = window('kr', N, 16);
 
-    //plot the window profile
-    plot((1:N)',[w1;w2;w4;w8;w16]')
-    set(gca(),'grid',[1 1]*color('gray'))
-    legend("$\beta="+string([1;2;4;8;16])+'$',[55,0.3])
+    // Plot the window profile
+    plot((1:N)', [w1; w2; w4; w8; w16]')
+    set(gca(), 'grid', [1 1]*color('gray'))
+    legend("$\beta = "+string([1;2;4;8;16])+'$',[55,0.3])
     xlabel("n")
     ylabel("w_n")
     title(gettext("Comparison of Kaiser window profiles"))
         </para>
         <programlisting role="example"><![CDATA[
     clf()
-    N=140;
-    w1=window('ch',N,[0.001,-1]);
-    w2=window('ch',N,[0.05,-1]);
-    w3=window('ch',N,[-1,0.4]);
+    N = 140;
+    w1 = window('ch', N, [0.001 -1]);
+    w2 = window('ch', N, [0.05 -1]);
+    w3 = window('ch', N, [-1 0.4]);
 
-    //plot the window profile
-    subplot(121);plot((1:N)',[w1;w2;w3]')
-    set(gca(),'grid',[1 1]*color('gray'))
-    //legend("$\beta="+string([1;2;4;8;16])+'$',[55,0.3])
+    // Plot the window profile
+    subplot(121);
+    plot((1:N)', [w1; w2; w3]')
+    set(gca(), 'grid', [1 1]*color('gray'))
+    //legend("$\beta = "+string([1;2;4;8;16])+'$',[55,0.3])
     xlabel("n")
     ylabel("w_n")
     title(gettext("Comparison of Chebychev window profiles"))
-    //plot the magnitude of the frequency responses
-    n=256;
-    [W1,fr]=frmag(w1,n);
-    [W2,fr]=frmag(w2,n);
-    [W3,fr]=frmag(w3,n);
-    subplot(122);plot(fr',20*log10([W1;W2;W3]'))
-    set(gca(),'grid',[1 1]*color('gray'))
-    xlabel(gettext("Pulsation (rd/s)"))
+
+    // Plot the magnitude of the frequency responses
+    n = 256;
+    [W1,fr] = frmag(w1, n);
+    [W2,fr] = frmag(w2, n);
+    [W3,fr] = frmag(w3, n);
+    subplot(122);
+    plot(fr', 20*log10([W1; W2; W3]'))
+    set(gca(), 'grid', [1 1]*color('gray'))
+    xlabel(gettext("Pulsation (rad/s)"))
     ylabel(gettext("Magnitude (dB)"))
-    legend(["Chebychef dp=0.001";"Chebychef dp=0.05";"Chebychef df=0.4"]);
+    legend(["Chebychef dp=0.001"; "Chebychef dp=0.05"; "Chebychef df=0.4"]);
     title(gettext("Chebychev window Magnitude plot"))
     ]]></programlisting>
         <para>
                 [W3,fr]=frmag(w3,n);
                 subplot(122);plot(fr',20*log10([W1;W2;W3]'))
                 set(gca(),'grid',[1 1]*color('gray'))
-                xlabel(gettext("Pulsation (rd/s)"))
+                xlabel(gettext("Pulsation (rad/s)"))
                 ylabel(gettext("Magnitude (dB)"))
                 legend(["Chebychef dp=0.001";"Chebychef dp=0.05";"Chebychef df=0.4"]);
                 title(gettext("Chebychev window Magnitude plot"))
index a70c7ff..bc29109 100644 (file)
@@ -352,51 +352,28 @@ title("Analog filters of order 7")
         <para>
             
             <scilab:image>
-                
                 fcut=5; //hz
-                
                 n=7;//filter order
-                
                 hc1=analpf(n,'cheb1',[0.1 0],fcut*2*%pi);
-                
                 hc2=analpf(n,'cheb2',[0 0.1],fcut*2*%pi);
-                
                 he=analpf(n,'ellip',[0.1 0.1],fcut*2*%pi);
-                
                 hb=analpf(n,'butt',[0 0],fcut*2*%pi);
-                
                 hc1.dt='c';hc2.dt='c';he.dt='c';hb.dt='c';
-                
                 clf();
-                
                 [fr, hf]=repfreq(hc1,0,15);
-                
                 plot(fr,abs(hf),'b')
-                
                 [fr, hf]=repfreq(hc2,0,15);
-                
-                plot(fr,abs(hf),'y')
-                
+                plot(fr,abs(hf),'g')
                 [fr, hf]=repfreq(he,0,15);
-                
                 plot(fr,abs(hf),'r')
-                
                 [fr, hf]=repfreq(hb,0,15);
-                
                 plot(fr,abs(hf),'c')
                 
-                
-                
                 legend(["Chebyshev I","Chebyshev II","Elliptic","Butterworth"]);
-                
                 xgrid()
-                
                 xlabel("Frequency (Hz)")
-                
                 ylabel("Gain")
-                
                 title("Analog filters of order 7")
-                
             </scilab:image>
             
         </para>
index e563ef8..c1fa814 100644 (file)
     [Wch,fr]=frmag(wch,n);
     subplot(122);plot(fr',20*log10([Whm;Wkr;Wch]'))
     set(gca(),'grid',[1 1]*color('gray'))
-    xlabel(gettext("Pulsation (rd/s)"))
+    xlabel(gettext("Pulsation (rad/s)"))
     ylabel(gettext("Magnitude (dB)"))
     legend(["Hamming N=24";"Kaiser N=24, Beta=6";"Chebychev N=24, dp=0.005"]);
     title(gettext("Magnitude plot"))
         <para>
             
             <scilab:image>
-                
                 clf()
-                
                 N=24;
-                
                 whm=window('hm',N);//Hamming window
-                
                 wkr=window('kr',N,6);//Hamming Kaiser window
-                
                 wch=window('ch',N,[0.005,-1]);//Chebychev window
-                
                 //plot the window profile
-                
                 subplot(121);plot((1:N)',[whm;wkr;wch]')
-                
                 set(gca(),'grid',[1 1]*color('gray'))
-                
                 xlabel("n")
-                
                 ylabel("w_n")
-                
                 title(gettext("Profile plot"))
-                
                 //plot the magnitude of the frequency responses
-                
                 n=256;
-                
                 [Whm,fr]=frmag(whm,n);
-                
                 [Wkr,fr]=frmag(wkr,n);
-                
                 [Wch,fr]=frmag(wch,n);
-                
                 subplot(122);plot(fr',20*log10([Whm;Wkr;Wch]'))
-                
                 set(gca(),'grid',[1 1]*color('gray'))
-                
-                xlabel(gettext("Pulsation (rd/s)"))
-                
+                xlabel(gettext("Pulsation (rad/s)"))
                 ylabel(gettext("Magnitude (dB)"))
-                
                 legend(["Hamming N=24";"Kaiser N=24, Beta=6";"Chebychev N=24, dp=0.005"]);
-                
                 title(gettext("Magnitude plot"))
-                
             </scilab:image>
             
         </para>
         <para>
             
             <scilab:image>
-                
                 clf()
-                
                 N=140;
-                
                 w1=window('kr',N,1);
-                
                 w2=window('kr',N,2);
-                
                 w4=window('kr',N,4);
-                
                 w8=window('kr',N,8);
-                
                 w16=window('kr',N,16);
                 
-                
-                
                 //plot the window profile
-                
                 plot((1:N)',[w1;w2;w4;w8;w16]')
-                
                 set(gca(),'grid',[1 1]*color('gray'))
-                
                 legend("$\beta="+string([1;2;4;8;16])+'$',[55,0.3])
-                
                 xlabel("n")
-                
                 ylabel("w_n")
-                
                 title(gettext("Comparison of Kaiser window profiles"))
-                
             </scilab:image>
             
         </para>
         <para>
             
             <scilab:image>
-                
                 N=140;
-                
                 w1=window('ch',N,[0.001,-1]);
-                
                 w2=window('ch',N,[0.05,-1]);
-                
                 w3=window('ch',N,[-1,0.4]);
                 
-                
-                
                 //plot the window profile
-                
                 subplot(121);plot((1:N)',[w1;w2;w3]')
-                
                 set(gca(),'grid',[1 1]*color('gray'))
-                
                 //legend("$\beta="+string([1;2;4;8;16])+'$',[55,0.3])
-                
                 xlabel("n")
-                
                 ylabel("w_n")
-                
                 title(gettext("Comparison of Chebychev window profiles"))
-                
                 //plot the magnitude of the frequency responses
-                
                 n=256;
-                
                 [W1,fr]=frmag(w1,n);
-                
                 [W2,fr]=frmag(w2,n);
-                
                 [W3,fr]=frmag(w3,n);
-                
                 subplot(122);plot(fr',20*log10([W1;W2;W3]'))
-                
                 set(gca(),'grid',[1 1]*color('gray'))
-                
-                xlabel(gettext("Pulsation (rd/s)"))
-                
+                xlabel(gettext("Pulsation (rad/s)"))
                 ylabel(gettext("Magnitude (dB)"))
-                
                 legend(["Chebychef dp=0.001";"Chebychef dp=0.05";"Chebychef df=0.4"]);
-                
                 title(gettext("Chebychev window Magnitude plot"))
-                
             </scilab:image>