Tiny improvements of narsimul + reglin help pages 37/9837/2
Sylvestre Ledru [Wed, 28 Nov 2012 14:53:57 +0000 (15:53 +0100)]
Change-Id: I0418e749df808a5c63b021cbdca814e14bb2dfc3

scilab/modules/cacsd/help/en_US/narsimul.xml
scilab/modules/cacsd/help/en_US/reglin.xml

index 5997a17..c074e5d 100644 (file)
@@ -13,7 +13,7 @@
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="narsimul">
     <refnamediv>
         <refname>narsimul</refname>
-        <refpurpose>armax simulation ( using rtitr)   </refpurpose>
+        <refpurpose>armax simulation (using rtitr)   </refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
@@ -24,8 +24,8 @@
     <refsection>
         <title>Description</title>
         <para>
-            ARMAX simulation. Same as arsimul but the method is different 
-            the simulation is made with rtitr
+            ARMAX simulation. Same as <link linkend="arsimul">arsimul</link> but the method is different
+            the simulation is made with <link linkend="rtitr">rtitr</link>
         </para>
     </refsection>
 </refentry>
index cb1777e..3191a52 100644 (file)
             The estimator <literal>a</literal> is a matrix of size <literal>(q,p)</literal> and <literal>b</literal> is a
             vector of size <literal>(q,1)</literal>
         </para>
-        <programlisting role=""><![CDATA[ 
+    </refsection>
+    <refsection>
+        <title>Examples</title>
+        <programlisting role="example"><![CDATA[
 // simulation of data for a(3,5) and b(3,1)
 x=rand(5,100);
 aa=testmatrix('magi',5);aa=aa(1:3,:);
 bb=[9;10;11]
 y=aa*x +bb*ones(1,100)+ 0.1*rand(3,100);
-// identification 
+
+// identification
 [a,b,sig]=reglin(x,y);
 max(abs(aa-a))
 max(abs(bb-b))
+
 // an other example : fitting a polynomial
 f=1:100; x=[f.*f; f];
 y= [ 2,3]*x+ 10*ones(f) + 0.1*rand(f);