Revision of some help pages of module "elementary_functions" (en_US, ru_RU). 76/9276/2
Stanislav KROTER [Tue, 25 Sep 2012 16:47:40 +0000 (22:47 +0600)]
Change-Id: Ic855a0c8c09d99feb7f293dd271f1a131ee7d487

13 files changed:
scilab/modules/elementary_functions/help/en_US/exponential/expm.xml
scilab/modules/elementary_functions/help/en_US/exponential/polar.xml
scilab/modules/elementary_functions/help/en_US/matrixmanipulation/squeeze.xml
scilab/modules/elementary_functions/help/en_US/symbolic/addf.xml
scilab/modules/elementary_functions/help/en_US/symbolic/cmb_lin.xml
scilab/modules/elementary_functions/help/en_US/symbolic/ldivf.xml
scilab/modules/elementary_functions/help/en_US/symbolic/mulf.xml
scilab/modules/elementary_functions/help/en_US/symbolic/rdivf.xml
scilab/modules/elementary_functions/help/en_US/symbolic/solve.xml
scilab/modules/elementary_functions/help/en_US/symbolic/subf.xml
scilab/modules/elementary_functions/help/ru_RU/exponential/CHAPTER
scilab/modules/elementary_functions/help/ru_RU/symbolic/CHAPTER
scilab/modules/elementary_functions/help/ru_RU/symbolic/solve.xml

index 72fb693..3b7b326 100644 (file)
@@ -13,7 +13,7 @@
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="expm">
     <refnamediv>
         <refname>expm</refname>
-        <refpurpose> square matrix exponential</refpurpose>
+        <refpurpose>square matrix exponential</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
@@ -25,7 +25,7 @@
             <varlistentry>
                 <term>X</term>
                 <listitem>
-                    <para>square matrix with real or complex entries.</para>
+                    <para>a square matrix with real or complex entries.</para>
                 </listitem>
             </varlistentry>
         </variablelist>
     <refsection>
         <title>Description</title>
         <para>
-            <literal>X</literal> is a square matrix <literal>expm(X)</literal> is the matrix
+            If <varname>X</varname> is a square matrix then <literal>expm(X)</literal> is the matrix
         </para>
         <para>
             <literal>expm(X) = I + X + X^2 /2 + ...</literal>
         </para>
         <para>
             The computation is performed by first 
-            block-diagonalizing <literal>X</literal> and then applying a Pade approximation 
+            block-diagonalizing <varname>X</varname> and then applying a Pade approximation
             on each block.
         </para>
     </refsection>
index 78f05a6..b19618f 100644 (file)
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="polar">
     <refnamediv>
         <refname>polar</refname>
-        <refpurpose> polar form</refpurpose>
+        <refpurpose>polar form</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>[Ro,Theta]=polar(A)</synopsis>
+        <synopsis>[Ro, Theta] = polar(A)</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Arguments</title>
             <varlistentry>
                 <term>A</term>
                 <listitem>
-                    <para>real or complex square matrix</para>
+                    <para>a real or complex square matrix</para>
                 </listitem>
             </varlistentry>
             <varlistentry>
-                <term>Ro,  </term>
+                <term>Ro</term>
                 <listitem>
-                    <para>real matrix</para>
+                    <para>a real matrix</para>
                 </listitem>
             </varlistentry>
             <varlistentry>
-                <term>Theta,  </term>
+                <term>Theta</term>
                 <listitem>
-                    <para>real or complex matrix</para>
+                    <para>a real or complex matrix</para>
                 </listitem>
             </varlistentry>
         </variablelist>
@@ -45,8 +45,8 @@
     <refsection>
         <title>Description</title>
         <para>
-            <literal>[Ro,Theta]=polar(A)</literal> returns the polar form of
-            <literal>A</literal> i.e.  <literal>A=Ro*expm(%i*Theta)</literal><literal>Ro</literal> symmetric &gt;=0 and <literal>Theta</literal> hermitian
+            <code>[Ro,Theta]=polar(A)</code> returns the polar form of
+            <varname>A</varname> i.e.<code>A=Ro*expm(%i*Theta)</code> when <varname>Ro</varname> symmetric &gt;=0 and <varname>Theta</varname> hermitian
             &gt;=0.
         </para>
     </refsection>
 A=rand(5,5);
 [Ro,Theta]=polar(A);
 norm(A-Ro*expm(%i*Theta),1)
+
+B = complex(5,7)
+[M, P] = polar(B)
+M * exp(%i * P)
  ]]></programlisting>
     </refsection>
     <refsection role="see also">
index 5e202df..30a8be2 100644 (file)
@@ -13,7 +13,7 @@
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="squeeze">
     <refnamediv>
         <refname>squeeze</refname>
-        <refpurpose>Remove singleton dimensions of a hypermatrix</refpurpose>
+        <refpurpose>removes singleton dimensions of a hypermatrix</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
             <varlistentry>
                 <term>hypIn</term>
                 <listitem>
-                    <para>hypermatrix or matrix of constant type.</para>
+                    <para>a hypermatrix or matrix of constant type.</para>
                 </listitem>
             </varlistentry>
             <varlistentry>
                 <term>hypOut</term>
                 <listitem>
-                    <para>hypermatrix or matrix of constant type.</para>
+                    <para>a hypermatrix or matrix of constant type.</para>
                 </listitem>
             </varlistentry>
         </variablelist>
     </refsection>
     <refsection>
         <title>Description</title>
-        <para> Remove singleton dimensions of a hypermatrix, that is any dimension for
-            which the size is 1. If the input is a matrix, it is unaffected.
+        <para>
+          The <function>squeeze</function> function removes singleton dimensions of a
+          hypermatrix, that is any dimension for which the size is <literal>1</literal>. If
+          the input <varname>hypIn</varname> is a matrix, it is unaffected.
         </para>
     </refsection>
     <refsection>
index 2581820..523821d 100644 (file)
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="addf">
     <refnamediv>
         <refname>addf</refname>
-        <refpurpose> symbolic addition</refpurpose>
+        <refpurpose>symbolic addition</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>addf("a","b")</synopsis>
+        <synopsis>c = addf(a, b)</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Arguments</title>
         <variablelist>
             <varlistentry>
-                <term>"a","b"  </term>
+                <term>a, b, c</term>
                 <listitem>
-                    <para>character strings</para>
+                    <para>character strings.</para>
                 </listitem>
             </varlistentry>
         </variablelist>
@@ -33,9 +33,9 @@
     <refsection>
         <title>Description</title>
         <para>
-            <literal>addf("a","b")</literal> returns the character string <literal>"a+b"</literal>.
-            Trivial simplifications such as <literal>addf("0","a")</literal> or
-            <literal>addf("1","2")</literal> are performed.
+          The function <function>addf</function> performs a symbolic addition.
+          <code>c = addf("a", "b")</code> returns the character string <varname>c</varname>
+          which is <literal>"a + b"</literal>. Trivial simplifications such as <code>addf("0", "a")</code> or <code>addf("1", "2")</code> are performed.
         </para>
     </refsection>
     <refsection>
@@ -44,6 +44,7 @@
 addf('0','1')
 addf('1','a')
 addf('1','2')
+addf('a','b')
 'a'+'b'
  ]]></programlisting>
     </refsection>
index 3137ff1..6e71c39 100644 (file)
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>[x]=cmb_lin(alfa,x,beta,y)</synopsis>
+        <synopsis>[x] = cmb_lin(alfa, x, beta, y)</synopsis>
     </refsynopsisdiv>
     <refsection>
+        <title>Arguments</title>
+        <variablelist>
+            <varlistentry>
+                <term>alfa, beta, x, y</term>
+                <listitem>
+                    <para>character strings.</para>
+                </listitem>
+            </varlistentry>
+        </variablelist>
+    </refsection>
+    <refsection>
         <title>Description</title>
         <para>
-            Evaluates <literal>alfa*x-beta*y</literal>. <literal> alfa, beta, x, y</literal> are character
-            strings. (low-level routine)
+            Evaluates symbolic linear combination <code>alfa*x-beta*y</code>. (low-level routine)
         </para>
     </refsection>
+    <refsection>
+        <title>Examples</title>
+        <programlisting role="example"><![CDATA[
+cmb_lin('alfa','x','beta','y')
+cmb_lin('alfa','x','beta','-y')
+ ]]></programlisting>
+    </refsection>
     <refsection role="see also">
         <title>See Also</title>
         <simplelist type="inline">
index 226dd81..c8120c9 100644 (file)
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>ldivf('d','c')</synopsis>
+        <synopsis>ldivf(d, c)</synopsis>
     </refsynopsisdiv>
     <refsection>
+        <title>Arguments</title>
+        <variablelist>
+            <varlistentry>
+                <term>d, c</term>
+                <listitem>
+                    <para>character strings.</para>
+                </listitem>
+            </varlistentry>
+        </variablelist>
+    </refsection>
+    <refsection>
         <title>Description</title>
         <para>
-            returns the string <literal>'c\d'</literal>
-            Trivial simplifications such as <literal>'1\c' = 'c'</literal> are performed.
+          <code>ldivf('d', 'c')</code> performs the left symbolic division and returns the
+          string <literal>'c\d'</literal>. Trivial simplifications such as <literal>'1\c' = 'c'</literal> are performed.
         </para>
     </refsection>
     <refsection>
@@ -33,6 +44,7 @@ ldivf('1','1')
 ldivf('a','0')
 ldivf('a','x')
 ldivf('2','4')
+ldivf('0','a') //Caution...
  ]]></programlisting>
     </refsection>
     <refsection role="see also">
index 1b53b2a..90cb123 100644 (file)
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="mulf">
     <refnamediv>
         <refname>mulf</refname>
-        <refpurpose>  symbolic multiplication</refpurpose>
+        <refpurpose>symbolic multiplication</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>mulf('d','c')</synopsis>
+        <synopsis>mulf(d, c)</synopsis>
     </refsynopsisdiv>
     <refsection>
+        <title>Arguments</title>
+        <variablelist>
+            <varlistentry>
+                <term>d, c</term>
+                <listitem>
+                    <para>character strings.</para>
+                </listitem>
+            </varlistentry>
+        </variablelist>
+    </refsection>
+    <refsection>
         <title>Description</title>
         <para>
-            returns the string <literal>'c*d'</literal>
-            Trivial simplifications such as <literal>'1*c' = 'c'</literal> are performed.
+            <code>mulf('d', 'c')</code> performs the symbolic multiplication and returns
+            the string <literal>'c*d'</literal>. Trivial simplifications such as <literal>'1*c' = 'c'</literal> are performed.
         </para>
     </refsection>
     <refsection>
@@ -31,7 +42,7 @@
         <programlisting role="example"><![CDATA[ 
 mulf('1','a')
 mulf('0','a')
-'a'+'b'   //Caution...
+'a'*'b'   //Caution...
  ]]></programlisting>
     </refsection>
     <refsection role="see also">
index 2ab842a..50e9a01 100644 (file)
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="rdivf">
     <refnamediv>
         <refname>rdivf</refname>
-        <refpurpose> right symbolic division</refpurpose>
+        <refpurpose>right symbolic division</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>["r"]=ldivf("d","c")</synopsis>
+        <synopsis>[r] = rdivf(d, c)</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Arguments</title>
         <variablelist>
             <varlistentry>
-                <term>"d","c","r"  </term>
+                <term>d, c, r </term>
                 <listitem>
-                    <para>strings</para>
+                    <para>character strings</para>
                 </listitem>
             </varlistentry>
         </variablelist>
     <refsection>
         <title>Description</title>
         <para>
-            returns the string <literal>"c/d"</literal>
-            Trivial simplifications such as <literal>"c/1" = "c"</literal> are performed.
+          <code>r=rdivf("d", "c")</code> returns the string <varname>r</varname> which is
+          <literal>"c/d"</literal>. Trivial simplifications such as <literal>"c/1" = "c"</literal> are performed.
         </para>
     </refsection>
     <refsection>
         <title>Examples</title>
         <programlisting role="example"><![CDATA[ 
-ldivf('c','d')
-ldivf('1','2')
-ldivf('a','0')
+rdivf('c','d')
+rdivf('1','2')
+rdivf('0','a')
+rdivf('a','0') //Caution...
  ]]></programlisting>
     </refsection>
     <refsection role="see also">
index deb0e30..38b3e68 100644 (file)
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>[x]=solve(A,b)</synopsis>
+        <synopsis>[x] = solve(A, b)</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Arguments</title>
         <variablelist>
             <varlistentry>
-                <term>A,b,x</term>
+                <term>A, b, x</term>
                 <listitem>
                     <para>matrix (resp. vectors) of character strings</para>
                 </listitem>
@@ -33,8 +33,8 @@
     <refsection>
         <title>Description</title>
         <para>
-            solves <literal>A*x = b</literal> when <literal>A</literal> is an
-            upper triangular matrix made of character strings.
+          <code>x = solve(A, b)</code> solves <literal>A*x = b</literal> when
+          <literal>A</literal> is an upper triangular matrix made of character strings.
         </para>
     </refsection>
     <refsection>
index f6c974a..a3071fc 100644 (file)
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="subf">
     <refnamediv>
         <refname>subf</refname>
-        <refpurpose>  symbolic subtraction</refpurpose>
+        <refpurpose> symbolic subtraction</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>["c"]=subf("a","b")</synopsis>
+        <synopsis>[c] = subf(a, b)</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Arguments</title>
         <variablelist>
             <varlistentry>
-                <term>"a","b","c"  </term>
+                <term>a, b, c</term>
                 <listitem>
-                    <para>strings</para>
+                    <para>character strings</para>
                 </listitem>
             </varlistentry>
         </variablelist>
     <refsection>
         <title>Description</title>
         <para>
-            returns the character string <literal>c</literal>=<literal>"a-b"</literal>
-            Trivial simplifications such as <literal>subf("0","a")</literal> or
-            <literal>subf("1","2")</literal> are performed.
+          <code>c = subf("a", "b")</code> performs a symbolic subtraction and returns the
+          character string <varname>c</varname> which is <literal>"a-b"</literal>. Trivial
+          simplifications such as <literal>subf("0","a")</literal> or
+          <literal>subf("1","2")</literal> are performed.
         </para>
     </refsection>
     <refsection>
@@ -50,6 +51,9 @@ subf('a','0')
         <title>See Also</title>
         <simplelist type="inline">
             <member>
+                <link linkend="addf">addf</link>
+            </member>
+            <member>
                 <link linkend="mulf">mulf</link>
             </member>
             <member>
index 7490153..0425c47 100644 (file)
     </refnamediv>
     <refsynopsisdiv>
         <title>Последовательность вызова</title>
-        <synopsis>[x]=solve(A,b)</synopsis>
+        <synopsis>[x] = solve(A, b)</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Аргументы</title>
         <variablelist>
             <varlistentry>
-                <term>A,b,x</term>
+                <term>A, b, x</term>
                 <listitem>
-                    <para>матрица (соответственно, вектроры) символьных строк</para>
+                    <para>матрица (соответственно, векторы) символьных строк</para>
                 </listitem>
             </varlistentry>
         </variablelist>
@@ -33,7 +33,8 @@
     <refsection>
         <title>Описание</title>
         <para>
-            Решает уравнение <literal>A*x = b</literal>, где <literal>A</literal> является верхней треугольной матрицей, составленной из символьных строк.
+            Инструкция <code>x = solve(A, b)</code> решает уравнение <literal>A*x = b</literal>, где <literal>A</literal> является верхней треугольной матрицей,
+            составленной из символьных строк.
         </para>
     </refsection>
     <refsection>