Revision of help page for gcd. Insert an explanation of the term "unimodular matrix... 25/9125/2
Stanislav KROTER [Mon, 24 Sep 2012 15:12:10 +0000 (21:12 +0600)]
Change-Id: I952139f207656a6949a9ffaeadae2db08c385e82

scilab/modules/elementary_functions/help/en_US/discrete/gcd.xml

index 8c3bb83..be61f50 100644 (file)
@@ -17,7 +17,7 @@
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>[pgcd,U]=gcd(p)</synopsis>
+        <synopsis>[pgcd, U]=gcd(p)</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Arguments</title>
@@ -26,8 +26,8 @@
                 <term>p</term>
                 <listitem>
                     <para>
-                        polynomial row vector <literal>p=[p1,..,pn]</literal> or integer row
-                        vector (type equal to 8)
+                        a polynomial row vector <literal>p=[p1, ..., pn]</literal> or
+                        an integer row vector (type equal to 8)
                     </para>
                 </listitem>
             </varlistentry>
     <refsection>
         <title>Description</title>
         <para>
-            computes the gcd  of components of <literal>p</literal> and a unimodular
-            matrix (with polynomial inverse) <literal>U</literal>, with minimal degree such that
+          <code>gcd(p)</code> computes the gcd of components of <varname>p</varname> (<varname>pgcd</varname>) and an
+          unimodular matrix (with polynomial inverse) <varname>U</varname>, with minimal degree such that
         </para>
         <para>
-            <literal>p*U=[0 ... 0 pgcd]</literal>
+            <literal>p*U=[0 ... 0 pgcd]</literal>.
+        </para>
+        <para>
+          In mathematics, an <emphasis role='italic'>unimodular</emphasis> matrix
+          <literal>U</literal> is a square integer matrix having
+          determinant <literal>+1</literal> or <literal>-1</literal>.
         </para>
     </refsection>
     <refsection>