gspec was declared obsolete in Scilab 4, now removed 47/18247/4
Nicolas [Wed, 15 Jun 2016 07:28:13 +0000 (09:28 +0200)]
 * trzeros.xml (fr,pt,ru) are actually in english => removed

Change-Id: Icb7eba2ff6d135e528983a1ace443a3d22535fd0

21 files changed:
scilab/CHANGES.md
scilab/modules/cacsd/help/en_US/linear_analysis/freq_domain/trzeros.xml
scilab/modules/cacsd/help/fr_FR/linear_analysis/freq_domain/trzeros.xml [deleted file]
scilab/modules/cacsd/help/ja_JP/linear_analysis/freq_domain/trzeros.xml
scilab/modules/cacsd/help/pt_BR/linear_analysis/freq_domain/trzeros.xml [deleted file]
scilab/modules/cacsd/help/ru_RU/linear_analysis/freq_domain/trzeros.xml [deleted file]
scilab/modules/cacsd/macros/linfn.sci
scilab/modules/helptools/data/configuration/scilab_macros.txt
scilab/modules/linear_algebra/help/en_US/eigen/gspec.xml [deleted file]
scilab/modules/linear_algebra/help/en_US/pencil/kroneck.xml
scilab/modules/linear_algebra/help/en_US/pencil/quaskro.xml
scilab/modules/linear_algebra/help/fr_FR/eigen/gspec.xml [deleted file]
scilab/modules/linear_algebra/help/fr_FR/eigen/spec.xml
scilab/modules/linear_algebra/help/ja_JP/eigen/gspec.xml [deleted file]
scilab/modules/linear_algebra/help/ja_JP/pencil/kroneck.xml
scilab/modules/linear_algebra/help/ja_JP/pencil/quaskro.xml
scilab/modules/linear_algebra/help/pt_BR/eigen/gspec.xml [deleted file]
scilab/modules/linear_algebra/help/pt_BR/pencil/kroneck.xml
scilab/modules/linear_algebra/help/pt_BR/pencil/quaskro.xml
scilab/modules/linear_algebra/locales/linear_algebra.pot
scilab/modules/linear_algebra/macros/gspec.sci [deleted file]

index d6779c5..dc8ac95 100644 (file)
@@ -189,7 +189,6 @@ Obsolete functions or features
 * `maxfiles` is now obsolete.
 * `isoview(xmin,xmax,ymin,ymax)` is deprecated. Please use `isoview("on"), replot(..)` instead.
 
-
 Removed Functions
 -----------------
 
@@ -203,6 +202,7 @@ Removed Functions
 * `fcontour2d` has been removed. Please use `contour2d` instead.
 * `plot2d1` has been removed. Please use `plot2d` instead.
 * `lex_sort` has been removed. Please use `gsort(..,"lr")` instead
+* `gspec` was obsolete already in Scilab 4 and is now removed. Please use `spec` instead.
 
 * Symbolic module functions have been removed: `addf`, `cmb_lin`, `ldivf`, `mulf`, `rdivf`, `solve`, `subf`, `trianfml`, `trisolve` and `block2exp`.
 * Functionnalities based on former Scilab stack have been removed:
index 45258b6..cd045cc 100644 (file)
@@ -1,8 +1,8 @@
 <?xml version="1.0" encoding="UTF-8"?>
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) INRIA - 
- * 
+ * Copyright (C) INRIA -
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
     </refnamediv>
     <refsynopsisdiv>
         <title>Syntax</title>
-        <synopsis>[tr]=trzeros(Sl)
-            [nt,dt,rk]=trzeros(Sl)
+        <synopsis> tr  = trzeros(Sl)
+            [nt,dt,rk] = trzeros(Sl)
         </synopsis>
     </refsynopsisdiv>
-    <refsection>
+    <refsection role="parameters">
         <title>Arguments</title>
         <variablelist>
             <varlistentry>
             </varlistentry>
         </variablelist>
     </refsection>
-    <refsection>
+    <refsection role="description">
         <title>Description</title>
         <para>
-            Called with one output argument, <literal>trzeros(Sl)</literal> returns the 
+            Called with one output argument, <literal>trzeros(Sl)</literal> returns the
             transmission zeros of the linear system <literal>Sl</literal>.
         </para>
         <para>
             <literal>Sl</literal> may have a polynomial (but square) <literal>D</literal> matrix.
         </para>
         <para>
-            Called with 2 output arguments, <literal>trzeros</literal> returns the 
+            Called with 2 output arguments, <literal>trzeros</literal> returns the
             transmission zeros of the linear system <literal>Sl</literal> as <literal>tr=nt./dt</literal>;
         </para>
         <para>
             Transfer matrices are converted to state-space.
         </para>
         <para>
-            If <literal>Sl</literal> is a (square) polynomial matrix <literal>trzeros</literal> returns the 
+            If <literal>Sl</literal> is a (square) polynomial matrix <literal>trzeros</literal> returns the
             roots of its determinant.
         </para>
         <para>
-            For usual state-space system <literal>trzeros</literal> uses the state-space 
+            For usual state-space system <literal>trzeros</literal> uses the state-space
             algorithm of Emami-Naeni and Van Dooren.
         </para>
         <para>
         </para>
         <para>
             If <literal>C*B</literal> is invertible the transmission zeros are the eigenvalues
-            of <literal>N*A*M</literal> where <literal>M*N</literal> is a full rank factorization of 
+            of <literal>N*A*M</literal> where <literal>M*N</literal> is a full rank factorization of
             <literal>eye(A)-B*inv(C*B)*C</literal>;
         </para>
         <para>
-            For systems with a polynomial <literal>D</literal> matrix zeros are 
+            For systems with a polynomial <literal>D</literal> matrix zeros are
             calculated as the roots of the determinant of the system matrix.
         </para>
         <para>
             </warning>
         </para>
     </refsection>
-    <refsection>
+    <refsection role="examples">
         <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 W1=ssrand(2,2,5);trzeros(W1)    //call trzeros
 roots(det(systmat(W1)))         //roots of det(system matrix)
 s=poly(0,'s');W=[1/(s+1);1/(s-2)];W2=(s-3)*W*W';[nt,dt,rk]=trzeros(W2);
@@ -121,7 +121,7 @@ roots(St1(rowf,colf)), nt./dt     //By Kronecker form
         <title>See Also</title>
         <simplelist type="inline">
             <member>
-                <link linkend="gspec">gspec</link>
+                <link linkend="spec">spec</link>
             </member>
             <member>
                 <link linkend="kroneck">kroneck</link>
diff --git a/scilab/modules/cacsd/help/fr_FR/linear_analysis/freq_domain/trzeros.xml b/scilab/modules/cacsd/help/fr_FR/linear_analysis/freq_domain/trzeros.xml
deleted file mode 100644 (file)
index 76d70c8..0000000
+++ /dev/null
@@ -1,131 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!--
- * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) INRIA - 
- * 
- * Copyright (C) 2012 - 2016 - Scilab Enterprises
- *
- * This file is hereby licensed under the terms of the GNU GPL v2.0,
- * pursuant to article 5.3.4 of the CeCILL v.2.1.
- * This file was originally licensed under the terms of the CeCILL v2.1,
- * and continues to be available under such terms.
- * For more information, see the COPYING file which you should have received
- * along with this program.
- *
- -->
-<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="fr" xml:id="trzeros">
-    <refnamediv>
-        <refname>trzeros</refname>
-        <refpurpose>transmission zeros and normal rank</refpurpose>
-    </refnamediv>
-    <refsynopsisdiv>
-        <title>Syntax</title>
-        <synopsis>[tr]=trzeros(Sl)
-            [nt,dt,rk]=trzeros(Sl)
-        </synopsis>
-    </refsynopsisdiv>
-    <refsection>
-        <title>Arguments</title>
-        <variablelist>
-            <varlistentry>
-                <term>Sl</term>
-                <listitem>
-                    <para>
-                        linear system (<literal>syslin</literal> list)
-                    </para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>nt</term>
-                <listitem>
-                    <para>complex vectors</para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>dt</term>
-                <listitem>
-                    <para>real vector</para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>rk</term>
-                <listitem>
-                    <para>integer (normal rank of Sl)</para>
-                </listitem>
-            </varlistentry>
-        </variablelist>
-    </refsection>
-    <refsection>
-        <title>Description</title>
-        <para>
-            Called with one output argument, <literal>trzeros(Sl)</literal> returns the 
-            transmission zeros of the linear system <literal>Sl</literal>.
-        </para>
-        <para>
-            <literal>Sl</literal> may have a polynomial (but square) <literal>D</literal> matrix.
-        </para>
-        <para>
-            Called with 2 output arguments, <literal>trzeros</literal> returns the 
-            transmission zeros of the linear system <literal>Sl</literal> as <literal>tr=nt./dt</literal>;
-        </para>
-        <para>
-            (Note that some components of <literal>dt</literal> may be zeros)
-        </para>
-        <para>
-            Called with 3 output arguments, <literal>rk</literal>  is the normal rank of <literal>Sl</literal>
-        </para>
-        <para>
-            Transfer matrices are converted to state-space.
-        </para>
-        <para>
-            If <literal>Sl</literal> is a (square) polynomial matrix <literal>trzeros</literal> returns the 
-            roots of its determinant.
-        </para>
-        <para>
-            For usual state-space system <literal>trzeros</literal> uses the state-space 
-            algorithm of Emami-Naeni and Van Dooren.
-        </para>
-        <para>
-            If <literal>D</literal> is invertible the transmission zeros are the eigenvalues
-            of the "<literal>A</literal> matrix" of the inverse system : <literal>A - B*inv(D)*C</literal>;
-        </para>
-        <para>
-            If <literal>C*B</literal> is invertible the transmission zeros are the eigenvalues
-            of <literal>N*A*M</literal> where <literal>M*N</literal> is a full rank factorization of 
-            <literal>eye(A)-B*inv(C*B)*C</literal>;
-        </para>
-        <para>
-            For systems with a polynomial <literal>D</literal> matrix zeros are 
-            calculated as the roots of the determinant of the system matrix.
-        </para>
-        <para>
-            <warning>
-                Caution: the computed zeros are not always reliable, in particular
-                in case of repeated zeros.
-            </warning>
-        </para>
-    </refsection>
-    <refsection>
-        <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
-W1=ssrand(2,2,5);trzeros(W1)    //call trzeros
-roots(det(systmat(W1)))         //roots of det(system matrix)
-s=poly(0,'s');W=[1/(s+1);1/(s-2)];W2=(s-3)*W*W';[nt,dt,rk]=trzeros(W2);
-St=systmat(tf2ss(W2));[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(St);
-St1=Q*St*Z;rowf=(Qd(1)+Qd(2)+1):(Qd(1)+Qd(2)+Qd(3));
-colf=(Zd(1)+Zd(2)+1):(Zd(1)+Zd(2)+Zd(3));
-roots(St1(rowf,colf)), nt./dt     //By Kronecker form
- ]]></programlisting>
-    </refsection>
-    <refsection role="see also">
-        <title>See Also</title>
-        <simplelist type="inline">
-            <member>
-                <link linkend="gspec">gspec</link>
-            </member>
-            <member>
-                <link linkend="kroneck">kroneck</link>
-            </member>
-        </simplelist>
-    </refsection>
-</refentry>
index 958788d..2b0fca0 100644 (file)
@@ -1,8 +1,8 @@
 <?xml version="1.0" encoding="UTF-8"?>
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) INRIA - 
- * 
+ * Copyright (C) INRIA -
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
@@ -24,7 +24,7 @@
             [nt,dt,rk]=trzeros(Sl)
         </synopsis>
     </refsynopsisdiv>
-    <refsection>
+    <refsection role="parameters">
         <title>パラメータ</title>
         <variablelist>
             <varlistentry>
@@ -55,7 +55,7 @@
             </varlistentry>
         </variablelist>
     </refsection>
-    <refsection>
+    <refsection role="description">
         <title>説明</title>
         <para>
             出力引数の数を1としてコールされた場合,<literal>trzeros(Sl)</literal> は
@@ -81,7 +81,7 @@
             伝達関数行列は状態空間表現に変換されます.
         </para>
         <para>
-            <literal>Sl</literal> が (正方) 多項式行列の場合, <literal>trzeros</literal> 
+            <literal>Sl</literal> が (正方) 多項式行列の場合, <literal>trzeros</literal>
             はその行列式の根を返します.
         </para>
         <para>
             特にゼロが重根の場合は注意を要します.
         </para>
     </refsection>
-    <refsection>
+    <refsection role="examples">
         <title>例</title>
-        <programlisting role="example"><![CDATA[ 
-W1=ssrand(2,2,5);trzeros(W1)    //call trzeros
+        <programlisting role="example"><![CDATA[
+W1 = ssrand(2,2,5);
+trzeros(W1)    //call trzeros
 roots(det(systmat(W1)))         //roots of det(system matrix)
-s=poly(0,'s');W=[1/(s+1);1/(s-2)];W2=(s-3)*W*W';[nt,dt,rk]=trzeros(W2);
-St=systmat(tf2ss(W2));[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(St);
-St1=Q*St*Z;rowf=(Qd(1)+Qd(2)+1):(Qd(1)+Qd(2)+Qd(3));
-colf=(Zd(1)+Zd(2)+1):(Zd(1)+Zd(2)+Zd(3));
+s = poly(0,'s');
+W = [1/(s+1);1/(s-2)];
+W2= (s-3)*W*W';
+[nt,dt,rk] = trzeros(W2);
+St = systmat(tf2ss(W2));
+[Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(St);
+St1 = Q*St*Z;
+rowf = (Qd(1)+Qd(2)+1):(Qd(1)+Qd(2)+Qd(3));
+colf = (Zd(1)+Zd(2)+1):(Zd(1)+Zd(2)+Zd(3));
 roots(St1(rowf,colf)), nt./dt     //By Kronecker form
  ]]></programlisting>
     </refsection>
@@ -124,7 +130,7 @@ roots(St1(rowf,colf)), nt./dt     //By Kronecker form
         <title>参照</title>
         <simplelist type="inline">
             <member>
-                <link linkend="gspec">gspec</link>
+                <link linkend="spec">spec</link>
             </member>
             <member>
                 <link linkend="kroneck">kroneck</link>
diff --git a/scilab/modules/cacsd/help/pt_BR/linear_analysis/freq_domain/trzeros.xml b/scilab/modules/cacsd/help/pt_BR/linear_analysis/freq_domain/trzeros.xml
deleted file mode 100644 (file)
index ed34a8a..0000000
+++ /dev/null
@@ -1,131 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!--
- * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) INRIA - 
- * 
- * Copyright (C) 2012 - 2016 - Scilab Enterprises
- *
- * This file is hereby licensed under the terms of the GNU GPL v2.0,
- * pursuant to article 5.3.4 of the CeCILL v.2.1.
- * This file was originally licensed under the terms of the CeCILL v2.1,
- * and continues to be available under such terms.
- * For more information, see the COPYING file which you should have received
- * along with this program.
- *
- -->
-<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="pt" xml:id="trzeros">
-    <refnamediv>
-        <refname>trzeros</refname>
-        <refpurpose>transmission zeros and normal rank</refpurpose>
-    </refnamediv>
-    <refsynopsisdiv>
-        <title>Syntax</title>
-        <synopsis>[tr]=trzeros(Sl)
-            [nt,dt,rk]=trzeros(Sl)
-        </synopsis>
-    </refsynopsisdiv>
-    <refsection>
-        <title>Arguments</title>
-        <variablelist>
-            <varlistentry>
-                <term>Sl</term>
-                <listitem>
-                    <para>
-                        linear system (<literal>syslin</literal> list)
-                    </para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>nt</term>
-                <listitem>
-                    <para>complex vectors</para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>dt</term>
-                <listitem>
-                    <para>real vector</para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>rk</term>
-                <listitem>
-                    <para>integer (normal rank of Sl)</para>
-                </listitem>
-            </varlistentry>
-        </variablelist>
-    </refsection>
-    <refsection>
-        <title>Description</title>
-        <para>
-            Called with one output argument, <literal>trzeros(Sl)</literal> returns the 
-            transmission zeros of the linear system <literal>Sl</literal>.
-        </para>
-        <para>
-            <literal>Sl</literal> may have a polynomial (but square) <literal>D</literal> matrix.
-        </para>
-        <para>
-            Called with 2 output arguments, <literal>trzeros</literal> returns the 
-            transmission zeros of the linear system <literal>Sl</literal> as <literal>tr=nt./dt</literal>;
-        </para>
-        <para>
-            (Note that some components of <literal>dt</literal> may be zeros)
-        </para>
-        <para>
-            Called with 3 output arguments, <literal>rk</literal>  is the normal rank of <literal>Sl</literal>
-        </para>
-        <para>
-            Transfer matrices are converted to state-space.
-        </para>
-        <para>
-            If <literal>Sl</literal> is a (square) polynomial matrix <literal>trzeros</literal> returns the 
-            roots of its determinant.
-        </para>
-        <para>
-            For usual state-space system <literal>trzeros</literal> uses the state-space 
-            algorithm of Emami-Naeni and Van Dooren.
-        </para>
-        <para>
-            If <literal>D</literal> is invertible the transmission zeros are the eigenvalues
-            of the "<literal>A</literal> matrix" of the inverse system : <literal>A - B*inv(D)*C</literal>;
-        </para>
-        <para>
-            If <literal>C*B</literal> is invertible the transmission zeros are the eigenvalues
-            of <literal>N*A*M</literal> where <literal>M*N</literal> is a full rank factorization of 
-            <literal>eye(A)-B*inv(C*B)*C</literal>;
-        </para>
-        <para>
-            For systems with a polynomial <literal>D</literal> matrix zeros are 
-            calculated as the roots of the determinant of the system matrix.
-        </para>
-        <para>
-            <warning>
-                Caution: the computed zeros are not always reliable, in particular
-                in case of repeated zeros.
-            </warning>
-        </para>
-    </refsection>
-    <refsection>
-        <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
-W1=ssrand(2,2,5);trzeros(W1)    //call trzeros
-roots(det(systmat(W1)))         //roots of det(system matrix)
-s=poly(0,'s');W=[1/(s+1);1/(s-2)];W2=(s-3)*W*W';[nt,dt,rk]=trzeros(W2);
-St=systmat(tf2ss(W2));[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(St);
-St1=Q*St*Z;rowf=(Qd(1)+Qd(2)+1):(Qd(1)+Qd(2)+Qd(3));
-colf=(Zd(1)+Zd(2)+1):(Zd(1)+Zd(2)+Zd(3));
-roots(St1(rowf,colf)), nt./dt     //By Kronecker form
- ]]></programlisting>
-    </refsection>
-    <refsection role="see also">
-        <title>See Also</title>
-        <simplelist type="inline">
-            <member>
-                <link linkend="gspec">gspec</link>
-            </member>
-            <member>
-                <link linkend="kroneck">kroneck</link>
-            </member>
-        </simplelist>
-    </refsection>
-</refentry>
diff --git a/scilab/modules/cacsd/help/ru_RU/linear_analysis/freq_domain/trzeros.xml b/scilab/modules/cacsd/help/ru_RU/linear_analysis/freq_domain/trzeros.xml
deleted file mode 100644 (file)
index cccfb8c..0000000
+++ /dev/null
@@ -1,131 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!--
- * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) INRIA - 
- * 
- * Copyright (C) 2012 - 2016 - Scilab Enterprises
- *
- * This file is hereby licensed under the terms of the GNU GPL v2.0,
- * pursuant to article 5.3.4 of the CeCILL v.2.1.
- * This file was originally licensed under the terms of the CeCILL v2.1,
- * and continues to be available under such terms.
- * For more information, see the COPYING file which you should have received
- * along with this program.
- *
- -->
-<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="ru" xml:id="trzeros">
-    <refnamediv>
-        <refname>trzeros</refname>
-        <refpurpose>transmission zeros and normal rank</refpurpose>
-    </refnamediv>
-    <refsynopsisdiv>
-        <title>Syntax</title>
-        <synopsis>[tr]=trzeros(Sl)
-            [nt,dt,rk]=trzeros(Sl)
-        </synopsis>
-    </refsynopsisdiv>
-    <refsection>
-        <title>Arguments</title>
-        <variablelist>
-            <varlistentry>
-                <term>Sl</term>
-                <listitem>
-                    <para>
-                        linear system (<literal>syslin</literal> list)
-                    </para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>nt</term>
-                <listitem>
-                    <para>complex vectors</para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>dt</term>
-                <listitem>
-                    <para>real vector</para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>rk</term>
-                <listitem>
-                    <para>integer (normal rank of Sl)</para>
-                </listitem>
-            </varlistentry>
-        </variablelist>
-    </refsection>
-    <refsection>
-        <title>Description</title>
-        <para>
-            Called with one output argument, <literal>trzeros(Sl)</literal> returns the 
-            transmission zeros of the linear system <literal>Sl</literal>.
-        </para>
-        <para>
-            <literal>Sl</literal> may have a polynomial (but square) <literal>D</literal> matrix.
-        </para>
-        <para>
-            Called with 2 output arguments, <literal>trzeros</literal> returns the 
-            transmission zeros of the linear system <literal>Sl</literal> as <literal>tr=nt./dt</literal>;
-        </para>
-        <para>
-            (Note that some components of <literal>dt</literal> may be zeros)
-        </para>
-        <para>
-            Called with 3 output arguments, <literal>rk</literal>  is the normal rank of <literal>Sl</literal>
-        </para>
-        <para>
-            Transfer matrices are converted to state-space.
-        </para>
-        <para>
-            If <literal>Sl</literal> is a (square) polynomial matrix <literal>trzeros</literal> returns the 
-            roots of its determinant.
-        </para>
-        <para>
-            For usual state-space system <literal>trzeros</literal> uses the state-space 
-            algorithm of Emami-Naeni and Van Dooren.
-        </para>
-        <para>
-            If <literal>D</literal> is invertible the transmission zeros are the eigenvalues
-            of the "<literal>A</literal> matrix" of the inverse system : <literal>A - B*inv(D)*C</literal>;
-        </para>
-        <para>
-            If <literal>C*B</literal> is invertible the transmission zeros are the eigenvalues
-            of <literal>N*A*M</literal> where <literal>M*N</literal> is a full rank factorization of 
-            <literal>eye(A)-B*inv(C*B)*C</literal>;
-        </para>
-        <para>
-            For systems with a polynomial <literal>D</literal> matrix zeros are 
-            calculated as the roots of the determinant of the system matrix.
-        </para>
-        <para>
-            <warning>
-                Caution: the computed zeros are not always reliable, in particular
-                in case of repeated zeros.
-            </warning>
-        </para>
-    </refsection>
-    <refsection>
-        <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
-W1=ssrand(2,2,5);trzeros(W1)    //call trzeros
-roots(det(systmat(W1)))         //roots of det(system matrix)
-s=poly(0,'s');W=[1/(s+1);1/(s-2)];W2=(s-3)*W*W';[nt,dt,rk]=trzeros(W2);
-St=systmat(tf2ss(W2));[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(St);
-St1=Q*St*Z;rowf=(Qd(1)+Qd(2)+1):(Qd(1)+Qd(2)+Qd(3));
-colf=(Zd(1)+Zd(2)+1):(Zd(1)+Zd(2)+Zd(3));
-roots(St1(rowf,colf)), nt./dt     //By Kronecker form
- ]]></programlisting>
-    </refsection>
-    <refsection role="see also">
-        <title>See Also</title>
-        <simplelist type="inline">
-            <member>
-                <link linkend="gspec">gspec</link>
-            </member>
-            <member>
-                <link linkend="kroneck">kroneck</link>
-            </member>
-        </simplelist>
-    </refsection>
-</refentry>
index 3ff4315..8f63c4e 100644 (file)
@@ -299,7 +299,7 @@ function [dist,frequ]=heval_test(e,f,TOL,option);
     // (nearly) infinite eigenvalues or eigenvalues of the form 0/0.
     //
     // The eigenvalues are computed via a generalized Schur decomposition
-    // of  f - lambda e . Let (a(i),b(i)) : i=1..nf be the output of gspec.
+    // of  f - lambda e . Let (a(i),b(i)) : i=1..nf be the output of spec(..).
     // Three cases must be distinguished:
     //    * both a(i) and b(i) are << 1 -> singularity of the pencil
     //    * b(i)<<1 and a(i) close to 1 -> infinite eigenvalue
diff --git a/scilab/modules/linear_algebra/help/en_US/eigen/gspec.xml b/scilab/modules/linear_algebra/help/en_US/eigen/gspec.xml
deleted file mode 100644 (file)
index 1e40f38..0000000
+++ /dev/null
@@ -1,48 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!--
- * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) 2008 - INRIA
- * 
- * Copyright (C) 2012 - 2016 - Scilab Enterprises
- *
- * This file is hereby licensed under the terms of the GNU GPL v2.0,
- * pursuant to article 5.3.4 of the CeCILL v.2.1.
- * This file was originally licensed under the terms of the CeCILL v2.1,
- * and continues to be available under such terms.
- * For more information, see the COPYING file which you should have received
- * along with this program.
- *
- -->
-<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" scilab:needs-examples="no" xml:id="gspec">
-    <refnamediv>
-        <refname>gspec</refname>
-        <refpurpose>
-            eigenvalues of matrix pencil. <emphasis role="bold">This function is obsolete.</emphasis>
-        </refpurpose>
-    </refnamediv>
-    <refsynopsisdiv>
-        <title>Syntax</title>
-        <synopsis>[al,be]=gspec(A,E)
-            [al,be,Z]=gspec(A,E)
-        </synopsis>
-    </refsynopsisdiv>
-    <refsection>
-        <title>Description</title>
-        <para>
-            This function is now included in the <literal>spec</literal> function.
-            the calling syntax must be replaced by
-        </para>
-        <programlisting role=""><![CDATA[ 
-[al,be]=spec(A,E)
-[al,be,Z]=spec(A,E)
- ]]></programlisting>
-    </refsection>
-    <refsection role="see also">
-        <title>See Also</title>
-        <simplelist type="inline">
-            <member>
-                <link linkend="spec">spec</link>
-            </member>
-        </simplelist>
-    </refsection>
-</refentry>
index 1e8f8b5..7216491 100644 (file)
@@ -2,7 +2,7 @@
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 2008 - INRIA
- * 
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
     </refnamediv>
     <refsynopsisdiv>
         <title>Syntax</title>
-        <synopsis>[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(F)
-            [Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(E,A)
+        <synopsis>
+            [Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(F)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(E,A)
         </synopsis>
     </refsynopsisdiv>
-    <refsection>
+    <refsection role="parameters">
         <title>Arguments</title>
         <variablelist>
             <varlistentry>
             </varlistentry>
         </variablelist>
     </refsection>
-    <refsection>
+    <refsection role="description">
         <title>Description</title>
         <para>
             Kronecker form of matrix pencil: <literal>kroneck</literal> computes two
             orthogonal matrices <literal>Q, Z</literal> which put the pencil <literal>F=s*E -A</literal> into
             upper-triangular form:
         </para>
-        <programlisting role=""><![CDATA[ 
+        <screen><![CDATA[
            | sE(eps)-A(eps) |        X       |      X     |      X        |
            |----------------|----------------|------------|---------------|
            |        O       | sE(inf)-A(inf) |      X     |      X        |
@@ -78,7 +79,7 @@ Q(sE-A)Z = |---------------------------------|----------------------------|
            |--------------------------------------------------------------|
            |                |                |            |               |
            |        0       |       0        |      0     | sE(eta)-A(eta)|
- ]]></programlisting>
+ ]]></screen>
         <para>
             The dimensions of the four blocks are given by:
         </para>
@@ -119,16 +120,18 @@ Q(sE-A)Z = |---------------------------------|----------------------------|
             The code is taken from T. Beelen (Slicot-WGS group).
         </para>
     </refsection>
-    <refsection>
+    <refsection role="examples">
         <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
-F=randpencil([1,1,2],[2,3],[-1,3,1],[0,3]);
-Q=rand(17,17);Z=rand(18,18);F=Q*F*Z;
-//random pencil with eps1=1,eps2=1,eps3=1; 2 J-blocks @ infty 
+        <programlisting role="example"><![CDATA[
+F = randpencil([1,1,2],[2,3],[-1,3,1],[0,3]);
+Q = rand(17,17);
+Z = rand(18,18);
+F = Q*F*Z;
+//random pencil with eps1=1,eps2=1,eps3=1; 2 J-blocks @ infty
 //with dimensions 2 and 3
 //3 finite eigenvalues at -1,3,1 and eta1=0,eta2=3
-[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(F);
-[Qd(1),Zd(1)]    //eps. part is sum(epsi) x (sum(epsi) + number of epsi) 
+[Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(F);
+[Qd(1),Zd(1)]    //eps. part is sum(epsi) x (sum(epsi) + number of epsi)
 [Qd(2),Zd(2)]    //infinity part
 [Qd(3),Zd(3)]    //finite part
 [Qd(4),Zd(4)]    //eta part is (sum(etai) + number(eta1)) x sum(etai)
@@ -143,7 +146,7 @@ numbeta
                 <link linkend="gschur">gschur</link>
             </member>
             <member>
-                <link linkend="gspec">gspec</link>
+                <link linkend="spec">spec</link>
             </member>
             <member>
                 <link linkend="systmat">systmat</link>
index 5ae334c..1db07d6 100644 (file)
@@ -2,7 +2,7 @@
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 2008 - INRIA
- * 
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
     </refnamediv>
     <refsynopsisdiv>
         <title>Syntax</title>
-        <synopsis>[Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F)
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A)
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F,tol)
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A,tol)
+        <synopsis>
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F,tol)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A,tol)
         </synopsis>
     </refsynopsisdiv>
-    <refsection>
+    <refsection role="parameters">
         <title>Arguments</title>
         <variablelist>
             <varlistentry>
             </varlistentry>
         </variablelist>
     </refsection>
-    <refsection>
+    <refsection role="description">
         <title>Description</title>
         <para>
             Quasi-Kronecker form of matrix pencil: <literal>quaskro</literal> computes two
             orthogonal matrices <literal>Q, Z</literal> which put the pencil <literal>F=s*E -A</literal> into
             upper-triangular form:
         </para>
-        <programlisting role=""><![CDATA[ 
+        <screen><![CDATA[
            | sE(eps)-A(eps) |        X       |      X     |
            |----------------|----------------|------------|
            |        O       | sE(inf)-A(inf) |      X     |
 Q(sE-A)Z = |=================================|============|
            |                                 |            |
            |                O                | sE(r)-A(r) |
- ]]></programlisting>
+ ]]></screen>
         <para>
             The dimensions of the blocks are given by:
         </para>
@@ -109,7 +110,7 @@ Q(sE-A)Z = |=================================|============|
             <literal>numbeps(2)</literal> = <literal>#</literal> of eps blocks of size 1 x 2
         </para>
         <para>
-            <literal>numbeps(3)</literal> = <literal>#</literal> of eps blocks of size 2 x 3     etc...
+            <literal>numbeps(3)</literal> = <literal>#</literal> of eps blocks of size 2 x 3  etc...
         </para>
         <para>
             The complete (four blocks) Kronecker form is given by
@@ -130,7 +131,7 @@ Q(sE-A)Z = |=================================|============|
                 <link linkend="gschur">gschur</link>
             </member>
             <member>
-                <link linkend="gspec">gspec</link>
+                <link linkend="spec">spec</link>
             </member>
         </simplelist>
     </refsection>
diff --git a/scilab/modules/linear_algebra/help/fr_FR/eigen/gspec.xml b/scilab/modules/linear_algebra/help/fr_FR/eigen/gspec.xml
deleted file mode 100644 (file)
index bf192d5..0000000
+++ /dev/null
@@ -1,72 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!--
- * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) 2008 - INRIA
- * 
- * Copyright (C) 2012 - 2016 - Scilab Enterprises
- *
- * This file is hereby licensed under the terms of the GNU GPL v2.0,
- * pursuant to article 5.3.4 of the CeCILL v.2.1.
- * This file was originally licensed under the terms of the CeCILL v2.1,
- * and continues to be available under such terms.
- * For more information, see the COPYING file which you should have received
- * along with this program.
- *
- -->
-<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="fr" xml:id="gspec">
-    <refnamediv>
-        <refname>gspec</refname>
-        <refpurpose>valeurs propres d'un faisceau de matrices (obsolete) </refpurpose>
-    </refnamediv>
-    <refsynopsisdiv>
-        <title>Séquence d'appel</title>
-        <synopsis>[al,be]=gspec(A,E)
-            [al,be,Z]=gspec(A,E)
-        </synopsis>
-    </refsynopsisdiv>
-    <refsection>
-        <title>Paramètres</title>
-        <variablelist>
-            <varlistentry>
-                <term>A, E  </term>
-                <listitem>
-                    <para>matrices carrées réelles de mêmes dimensions
-                    </para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>al, be  </term>
-                <listitem>
-                    <para>vecteurs réels
-                    </para>
-                </listitem>
-            </varlistentry>
-            <varlistentry>
-                <term>Z  </term>
-                <listitem>
-                    <para>matrice carrée régulière
-                    </para>
-                </listitem>
-            </varlistentry>
-        </variablelist>
-    </refsection>
-    <refsection>
-        <title>Description</title>
-        <para>
-            Cette fonction est maintenant un cas particulier de la fonction
-            <literal>spec</literal>. La syntaxe d'appel doit être remplacée par 
-        </para>
-        <programlisting role=""><![CDATA[ 
-[al,be]=spec(A,E)
-[al,be,Z]=spec(A,E)
- ]]></programlisting>
-    </refsection>
-    <refsection role="see also">
-        <title>Voir aussi</title>
-        <simplelist type="inline">
-            <member>
-                <link linkend="spec">spec</link>
-            </member>
-        </simplelist>
-    </refsection>
-</refentry>
index a3f7c2e..b641c46 100644 (file)
@@ -2,7 +2,7 @@
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 2008 - INRIA
- * 
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
     </refnamediv>
     <refsynopsisdiv>
         <title>Séquence d'appel</title>
-        <synopsis>evals=spec(A)
-            [X,diagevals]=spec(A)
-            
-            evals=spec(A,E)
-            [al,be]=spec(A,E)
-            [al,be,Z]=spec(A,E)
-            [al,be]=spec(A,E)
-            [al,be,Q,Z]=spec(A,E)
+        <synopsis>
+            evals = spec(A)
+            [X,diagevals] = spec(A)
+            evals = spec(A,E)
+            [al,be] = spec(A,E)
+            [al,be,Z] = spec(A,E)
+            [al,be,Q,Z] = spec(A,E)
         </synopsis>
     </refsynopsisdiv>
-    <refsection>
+    <refsection role="parameters">
         <title>Paramètres</title>
         <variablelist>
             <varlistentry>
             </varlistentry>
         </variablelist>
     </refsection>
-    <refsection>
+    <refsection role="description">
         <title>Description</title>
         <variablelist>
             <varlistentry>
             </varlistentry>
         </variablelist>
     </refsection>
-    <refsection>
+    <refsection role="examples">
         <title>Exemples</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 // MATRIX EIGENVALUES
-A=diag([1,2,3]);X=rand(3,3);A=inv(X)*A*X;
+A = diag([1,2,3]);
+X = rand(3,3);
+A = inv(X)*A*X;
 spec(A)
 
-x=poly(0,'x');
-pol=det(x*eye(3,3)-A)
+x = poly(0,'x');
+pol = det(x*eye(3,3)-A)
 roots(pol)
 
-[S,X]=bdiag(A);
+[S,X] = bdiag(A);
 clean(inv(X)*A*X)
 
 // PENCIL EIGENVALUES
-A=rand(3,3);
+A = rand(3,3);
 [al,be,Z] = spec(A,eye(A));al./be
 clean(inv(Z)*A*Z)  //displaying the eigenvalues (generic matrix)
-A=A+%i*rand(A);E=rand(A);
+A = A+%i*rand(A);
+E = rand(A);
 roots(det(%s*E-A))   //complex case
  ]]></programlisting>
     </refsection>
+    <refsection>
+        <title>Fonctions utilisées</title>
+        <para>
+            Le calcul des valeurs propres des matrices est basé sur les
+            routines Lapack DGEEV and ZGEEV.
+        </para>
+    </refsection>
     <refsection role="see also">
         <title>Voir aussi</title>
         <simplelist type="inline">
@@ -185,9 +194,6 @@ roots(det(%s*E-A))   //complex case
                 <link linkend="det">det</link>
             </member>
             <member>
-                <link linkend="gspec">gspec</link>
-            </member>
-            <member>
                 <link linkend="schur">schur</link>
             </member>
             <member>
@@ -204,11 +210,4 @@ roots(det(%s*E-A))   //complex case
             </member>
         </simplelist>
     </refsection>
-    <refsection>
-        <title>Fonctions Utilisées</title>
-        <para>
-            Le calcul des valeurs propres des matrices est basé sur les
-            routines Lapack DGEEV and ZGEEV.
-        </para>
-    </refsection>
 </refentry>
diff --git a/scilab/modules/linear_algebra/help/ja_JP/eigen/gspec.xml b/scilab/modules/linear_algebra/help/ja_JP/eigen/gspec.xml
deleted file mode 100644 (file)
index 5f2a1c7..0000000
+++ /dev/null
@@ -1,82 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-
-<!--
- * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) 2008 - INRIA
- * 
- * Copyright (C) 2012 - 2016 - Scilab Enterprises
- *
- * This file is hereby licensed under the terms of the GNU GPL v2.0,
- * pursuant to article 5.3.4 of the CeCILL v.2.1.
- * This file was originally licensed under the terms of the CeCILL v2.1,
- * and continues to be available under such terms.
- * For more information, see the COPYING file which you should have received
- * along with this program.
- *
- -->
-
-<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="ja" xml:id="gspec">
-    
-    <refnamediv>
-        
-        <refname>gspec</refname>
-        
-        <refpurpose>
-            
-            行列ペンシルの固有値.
-            
-            <emphasis role="bold">この関数は廃止されました.</emphasis>
-            
-        </refpurpose>
-        
-    </refnamediv>
-    
-    <refsynopsisdiv>
-        
-        <title>呼び出し手順</title>
-        
-        <synopsis>[al,be]=gspec(A,E)
-            
-            [al,be,Z]=gspec(A,E)
-            
-        </synopsis>
-        
-    </refsynopsisdiv>
-    
-    <refsection>
-        
-        <title>説明</title>
-        
-        <para>
-            
-            この関数は現在では <literal>spec</literal> 関数に統合されています.
-            
-            呼び出し手順は以下のように置き換られています
-            
-        </para>
-        
-        <programlisting role=""><![CDATA[ 
-[al,be]=spec(A,E)
-[al,be,Z]=spec(A,E)
- ]]></programlisting>
-        
-    </refsection>
-    
-    <refsection role="see also">
-        
-        <title>参照</title>
-        
-        <simplelist type="inline">
-            
-            <member>
-                
-                <link linkend="spec">spec</link>
-                
-            </member>
-            
-        </simplelist>
-        
-    </refsection>
-    
-</refentry>
-
index 9899689..ee12475 100644 (file)
@@ -1,9 +1,8 @@
 <?xml version="1.0" encoding="UTF-8"?>
-
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 2008 - INRIA
- * 
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
  * along with this program.
  *
  -->
-
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="ja" xml:id="kroneck">
-    
     <refnamediv>
-        
         <refname>kroneck</refname>
-        
         <refpurpose>行列ペンシルのクロネッカー形式</refpurpose>
-        
     </refnamediv>
-    
     <refsynopsisdiv>
-        
         <title>呼び出し手順</title>
-        
-        <synopsis>[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(F)
-            
-            [Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(E,A)
-            
+        <synopsis>
+            [Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(F)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(E,A)
         </synopsis>
-        
     </refsynopsisdiv>
-    
-    <refsection>
-        
+    <refsection role="parameters">
         <title>引数</title>
-        
         <variablelist>
-            
             <varlistentry>
-                
                 <term>F</term>
-                
                 <listitem>
-                    
                     <para>
-                        
                         実数行列ペンシル <literal>F=s*E-A</literal>
-                        
                     </para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>E,A</term>
-                
                 <listitem>
-                    
                     <para>同じ次元の実数行列</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>Q,Z</term>
-                
                 <listitem>
-                    
                     <para>正方直交行列</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>Qd,Zd</term>
-                
                 <listitem>
-                    
                     <para>整数ベクトル</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>numbeps,numeta</term>
-                
                 <listitem>
-                    
                     <para>整数ベクトル</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
         </variablelist>
-        
     </refsection>
-    
-    <refsection>
-        
+    <refsection role="description">
         <title>説明</title>
-        
         <para>
-            
             行列ペンシルのクロネッカー形式: <literal>kroneck</literal> は,
-            
             ペンシル<literal>F=s*E -A</literal>を以下のような上三角形式に変換する
-            
             2つの直交行列<literal>Q, Z</literal>を計算します:
-            
         </para>
-        
-        <programlisting role=""><![CDATA[ 
+        <screen><![CDATA[
            | sE(eps)-A(eps) |        X       |      X     |      X        |
            |----------------|----------------|------------|---------------|
            |        O       | sE(inf)-A(inf) |      X     |      X        |
@@ -135,150 +79,85 @@ Q(sE-A)Z = |---------------------------------|----------------------------|
            |--------------------------------------------------------------|
            |                |                |            |               |
            |        0       |       0        |      0     | sE(eta)-A(eta)|
- ]]></programlisting>
-        
+ ]]></screen>
         <para>
-            
             4個のブロックの次元は以下のように指定されます:
-            
         </para>
-        
         <para>
-            
             <literal>eps=Qd(1) x Zd(1)</literal>, <literal>inf=Qd(2) x Zd(2)</literal>,
-            
             <literal>f = Qd(3) x Zd(3)</literal>, <literal>eta=Qd(4)xZd(4)</literal>
-            
         </para>
-        
         <para>
-            
             <literal>inf</literal>ブロックにはペンシルの無限大モードが含まれます.
-            
         </para>
-        
         <para>
-            
             <literal>f</literal> ブロックにはペンシルの有限モードが含まれます.
-            
         </para>
-        
         <para>
-            
             イプシロンとetaブロックの構造は以下のように指定されます:
-            
         </para>
-        
         <para>
-            
             <literal>numbeps(1)</literal> = 大きさ 0 x 1のepsブロックの番号
-            
         </para>
-        
         <para>
-            
             <literal>numbeps(2)</literal> = 大きさ 1 x 2のepsブロックの番号
-            
         </para>
-        
         <para>
-            
             <literal>numbeps(3)</literal> = 大きさ 2 x 3のepsブロックの番号     etc...
-            
         </para>
-        
         <para>
-            
             <literal>numbeta(1)</literal> = 大きさ 1 x 0のetaブロックの番号
-            
         </para>
-        
         <para>
-            
             <literal>numbeta(2)</literal> = 大きさ 2 x 1のetaブロックの番号
-            
         </para>
-        
         <para>
-            
             <literal>numbeta(3)</literal> = 大きさ 3 x 2のetaブロックの番号     etc...
-            
         </para>
-        
         <para>
-            
             このコードはT. Beelen (Slicot-WGS group)によるものです.
-            
         </para>
-        
     </refsection>
-    
-    <refsection>
-        
+    <refsection role="examples">
         <title>例</title>
-        
-        <programlisting role="example"><![CDATA[ 
-F=randpencil([1,1,2],[2,3],[-1,3,1],[0,3]);
-Q=rand(17,17);Z=rand(18,18);F=Q*F*Z;
-//random pencil with eps1=1,eps2=1,eps3=1; 2 J-blocks @ infty 
+        <programlisting role="example"><![CDATA[
+F = randpencil([1,1,2],[2,3],[-1,3,1],[0,3]);
+Q = rand(17,17);
+Z = rand(18,18);
+F = Q*F*Z;
+//random pencil with eps1=1,eps2=1,eps3=1; 2 J-blocks @ infty
 //with dimensions 2 and 3
 //3 finite eigenvalues at -1,3,1 and eta1=0,eta2=3
-[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(F);
-[Qd(1),Zd(1)]    //eps. part is sum(epsi) x (sum(epsi) + number of epsi) 
+[Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(F);
+[Qd(1),Zd(1)]    //eps. part is sum(epsi) x (sum(epsi) + number of epsi)
 [Qd(2),Zd(2)]    //infinity part
 [Qd(3),Zd(3)]    //finite part
 [Qd(4),Zd(4)]    //eta part is (sum(etai) + number(eta1)) x sum(etai)
 numbeps
 numbeta
  ]]></programlisting>
-        
     </refsection>
-    
     <refsection role="see also">
-        
         <title>参照</title>
-        
         <simplelist type="inline">
-            
             <member>
-                
                 <link linkend="gschur">gschur</link>
-                
             </member>
-            
             <member>
-                
-                <link linkend="gspec">gspec</link>
-                
+                <link linkend="spec">spec</link>
             </member>
-            
             <member>
-                
                 <link linkend="systmat">systmat</link>
-                
             </member>
-            
             <member>
-                
                 <link linkend="pencan">pencan</link>
-                
             </member>
-            
             <member>
-                
                 <link linkend="randpencil">randpencil</link>
-                
             </member>
-            
             <member>
-                
                 <link linkend="trzeros">trzeros</link>
-                
             </member>
-            
         </simplelist>
-        
     </refsection>
-    
-</refentry>
-
+</refentry>
\ No newline at end of file
index fdd5a2b..0faf4ef 100644 (file)
@@ -1,9 +1,8 @@
 <?xml version="1.0" encoding="UTF-8"?>
-
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 2008 - INRIA
- * 
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
  * along with this program.
  *
  -->
-
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="ja" xml:id="quaskro">
-    
     <refnamediv>
-        
         <refname>quaskro</refname>
-        
         <refpurpose>準クロネッカー形式</refpurpose>
-        
     </refnamediv>
-    
     <refsynopsisdiv>
-        
         <title>呼び出し手順</title>
-        
-        <synopsis>[Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F)
-            
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A)
-            
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F,tol)
-            
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A,tol)
-            
+        <synopsis>
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F,tol)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A,tol)
         </synopsis>
-        
     </refsynopsisdiv>
-    
-    <refsection>
-        
+    <refsection role="parameters">
         <title>引数</title>
-        
         <variablelist>
-            
             <varlistentry>
-                
                 <term>F</term>
-                
                 <listitem>
-                    
                     <para>
-                        
-                        実数行列ペンシル <literal>F=s*E-A</literal>  (<literal>s=poly(0,'s')</literal>)
-                        
+                        実数行列ペンシル <literal>F=s*E-A</literal> (<literal>s=poly(0,'s')</literal>)
                     </para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>E,A</term>
-                
                 <listitem>
-                    
                     <para>同じ次元の実数行列</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>tol</term>
-                
                 <listitem>
-                    
                     <para>実数 (許容誤差,デフォルト値=1.d-10)</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>Q,Z</term>
-                
                 <listitem>
-                    
                     <para>正方直交行列</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>Qd,Zd</term>
-                
                 <listitem>
-                    
                     <para>整数ベクトル</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
             <varlistentry>
-                
                 <term>numbeps</term>
-                
                 <listitem>
-                    
                     <para>整数ベクトル</para>
-                    
                 </listitem>
-                
             </varlistentry>
-            
         </variablelist>
-        
     </refsection>
-    
-    <refsection>
-        
+    <refsection role="description">
         <title>説明</title>
-        
         <para>
-            
             行列ペンシルの準クロネッカー形式:
-            
             <literal>quaskro</literal>は,ペンシル<literal>F=s*E -A</literal>を上三角行列形式に変換する
-            
             直交行列 <literal>Q, Z</literal>を計算します:
-            
         </para>
-        
-        <programlisting role=""><![CDATA[ 
+        <screen><![CDATA[
            | sE(eps)-A(eps) |        X       |      X     |
            |----------------|----------------|------------|
            |        O       | sE(inf)-A(inf) |      X     |
 Q(sE-A)Z = |=================================|============|
            |                                 |            |
            |                O                | sE(r)-A(r) |
- ]]></programlisting>
-        
+ ]]></screen>
         <para>
-            
             ブロックの次元は次のように指定されます:
-            
         </para>
-        
         <para>
-            
             <literal>eps=Qd(1) x Zd(1)</literal>, <literal>inf=Qd(2) x Zd(2)</literal>,
-            
             <literal>r = Qd(3) x Zd(3)</literal>
-            
         </para>
-        
         <para>
-            
             <literal>inf</literal> ブロックには, ペンシルの無限大モードが含まれます.
-            
         </para>
-        
         <para>
-            
             <literal>f</literal> ブロックには, ペンシルの有限モードが含まれます.
-            
         </para>
-        
         <para>
-            
             epsilonブロックの構造は次のように指定されます:
-            
         </para>
-        
         <para>
-            
             <literal>numbeps(1)</literal> = 大きさ 0 x 1のepsブロックの数
-            
         </para>
-        
         <para>
-            
             <literal>numbeps(2)</literal> = 大きさ 1 x 2のepsブロックの数
-            
         </para>
-        
         <para>
-            
             <literal>numbeps(3)</literal> = 大きさ 2 x 3のepsブロックの数     etc...
-            
         </para>
-        
         <para>
-            
             完全な(4ブロックの)クロネッカー形式は,
-            
             (pertransposed)ペンシル<literal>sE(r)-A(r)</literal>を指定して
-            
             <literal>quaskro</literal>をコールする
-            
             関数<literal>kroneck</literal>により指定されます.
-            
         </para>
-        
         <para>
-            
             このコード T. Beelenによるものです.
-            
         </para>
-        
     </refsection>
-    
     <refsection role="see also">
-        
         <title>参照</title>
-        
         <simplelist type="inline">
-            
             <member>
-                
                 <link linkend="kroneck">kroneck</link>
-                
             </member>
-            
             <member>
-                
                 <link linkend="gschur">gschur</link>
-                
             </member>
-            
             <member>
-                
-                <link linkend="gspec">gspec</link>
-                
+                <link linkend="spec">spec</link>
             </member>
-            
         </simplelist>
-        
     </refsection>
-    
-</refentry>
-
+</refentry>
\ No newline at end of file
diff --git a/scilab/modules/linear_algebra/help/pt_BR/eigen/gspec.xml b/scilab/modules/linear_algebra/help/pt_BR/eigen/gspec.xml
deleted file mode 100644 (file)
index 516a7fe..0000000
+++ /dev/null
@@ -1,48 +0,0 @@
-<?xml version="1.0" encoding="ISO-8859-1"?>
-<!--
- * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
- * Copyright (C) 2008 - INRIA
- * 
- * Copyright (C) 2012 - 2016 - Scilab Enterprises
- *
- * This file is hereby licensed under the terms of the GNU GPL v2.0,
- * pursuant to article 5.3.4 of the CeCILL v.2.1.
- * This file was originally licensed under the terms of the CeCILL v2.1,
- * and continues to be available under such terms.
- * For more information, see the COPYING file which you should have received
- * along with this program.
- *
- -->
-<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns5="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:id="gspec" xml:lang="en">
-    <refnamediv>
-        <refname>gspec</refname>
-        <refpurpose>autovalores de feixe de matrizes (função
-            obsoleta)
-        </refpurpose>
-    </refnamediv>
-    <refsynopsisdiv>
-        <title>Seqüência de Chamamento</title>
-        <synopsis>[al,be]=gspec(A,E)
-            [al,be,Z]=gspec(A,E)
-        </synopsis>
-    </refsynopsisdiv>
-    <refsection>
-        <title>Descrição</title>
-        <para>
-            Esta função está agora inclusa na função <literal>spec</literal> . A
-            seqüência de chamamento deve ser substituida por
-        </para>
-        <programlisting role=""><![CDATA[ 
-[al,be]=spec(A,E)
-[al,be,Z]=spec(A,E)
- ]]></programlisting>
-    </refsection>
-    <refsection role="see also">
-        <title>Ver Também</title>
-        <simplelist type="inline">
-            <member>
-                <link linkend="spec">spec</link>
-            </member>
-        </simplelist>
-    </refsection>
-</refentry>
index 25c72b8..522f9c0 100644 (file)
@@ -2,7 +2,7 @@
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 2008 - INRIA
- * 
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
         <refpurpose>forma de Kronecker de feixe de matrizes</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
-        <title> Seqüência de Chamamento </title>
-        <synopsis>[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(F)
-            [Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(E,A)
+        <title> Seqüência de Chamamento </title>
+        <synopsis>
+            [Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(F)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(E,A)
         </synopsis>
     </refsynopsisdiv>
-    <refsection>
-        <title>Parâmetros</title>
+    <refsection role="parameters">
+        <title>Parâmetros</title>
         <variablelist>
             <varlistentry>
                 <term>F</term>
@@ -38,7 +39,7 @@
             <varlistentry>
                 <term>E,A</term>
                 <listitem>
-                    <para>duas matrizes de reais de mesma dimensão</para>
+                    <para>duas matrizes de reais de mesma dimensão</para>
                 </listitem>
             </varlistentry>
             <varlistentry>
             </varlistentry>
         </variablelist>
     </refsection>
-    <refsection>
-        <title>Descrição</title>
+    <refsection role="description">
+        <title>Descrição</title>
         <para>
             Forma de Kronecker de feixe de matrizes: <literal>kroneck</literal>
-            computa duas matrizes ortogonais <literal>Q, Z</literal> que põem o feixe
+            computa duas matrizes ortogonais <literal>Q, Z</literal> que põem o feixe
             <literal>F=s*E -A</literal> na forma triangular superior:
         </para>
-        <programlisting role=""><![CDATA[ 
+        <screen><![CDATA[ 
            | sE(eps)-A(eps) |        X       |      X     |      X        |
            |----------------|----------------|------------|---------------|
            |        O       | sE(inf)-A(inf) |      X     |      X        |
@@ -78,8 +79,8 @@ Q(sE-A)Z = |---------------------------------|----------------------------|
            |--------------------------------------------------------------|
            |                |                |            |               |
            |        0       |       0        |      0     | sE(eta)-A(eta)|
- ]]></programlisting>
-        <para>As dimensões dos quatro blocos são dadas por:</para>
+ ]]></screen>
+        <para>As dimensões dos quatro blocos são dadas por:</para>
         <para>
             <literal>eps=Qd(1) x Zd(1)</literal>, <literal>inf=Qd(2) x
                 Zd(2)
@@ -88,13 +89,13 @@ Q(sE-A)Z = |---------------------------------|----------------------------|
             <literal>eta=Qd(4)xZd(4)</literal>
         </para>
         <para>
-            O bloco <literal>inf</literal> contém modos infinitos de
+            O bloco <literal>inf</literal> contém modos infinitos de
             feixes.
         </para>
         <para>
-            O bloco <literal>f</literal> contém modos finitos de feixes.
+            O bloco <literal>f</literal> contém modos finitos de feixes.
         </para>
-        <para>A estrutura dos blocos epsilon e eta é dada por </para>
+        <para>A estrutura dos blocos epsilon e eta é dada por </para>
         <para>
             <literal>numbeps(1)</literal> = <literal>#</literal> de blocos eps
             de tamanho 0 x 1
@@ -119,33 +120,35 @@ Q(sE-A)Z = |---------------------------------|----------------------------|
             <literal>numbeta(3)</literal> = <literal>#</literal> de blocos eta
             de tamanho 3 x 2 etc...
         </para>
-        <para>O código foi retirado de T. Beelen (Slicot-WGS group).</para>
+        <para>O código foi retirado de T. Beelen (Slicot-WGS group).</para>
     </refsection>
-    <refsection>
+    <refsection role="examples">
         <title>Exemplos</title>
-        <programlisting role="example"><![CDATA[ 
-F=randpencil([1,1,2],[2,3],[-1,3,1],[0,3]);
-Q=rand(17,17);Z=rand(18,18);F=Q*F*Z;
-//feixe aleatório com eps1=1,eps2=1,eps3=1; 2 blocos J @ infty (infinito)
-//com dimensões 2 e 
+        <programlisting role="example"><![CDATA[
+F = randpencil([1,1,2],[2,3],[-1,3,1],[0,3]);
+Q = rand(17,17);
+Z = rand(18,18);
+F = Q*F*Z;
+//feixe aleatório com eps1=1,eps2=1,eps3=1; 2 blocos J @ infty (infinito)
+//com dimensões 2 e
 //3 autovalores finitos em -1,3,1 e eta1=0,eta2=3
-[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(F);
-[Qd(1),Zd(1)]    //parte eps. é sum(epsi) x (sum(epsi) + número de epsi) (sum="soma")
+[Q, Z, Qd, Zd, numbeps, numbeta] = kroneck(F);
+[Qd(1),Zd(1)]    //parte eps. é sum(epsi) x (sum(epsi) + número de epsi) (sum="soma")
 [Qd(2),Zd(2)]    //parte infinita
 [Qd(3),Zd(3)]    //parte finita
-[Qd(4),Zd(4)]    //parte eta é (sum(etai) + number(eta1)) x sum(etai) (number=número)
+[Qd(4),Zd(4)]    //parte eta é (sum(etai) + number(eta1)) x sum(etai) (number=número)
 numbeps
 numbeta
  ]]></programlisting>
     </refsection>
-    <refsection>
-        <title> Ver Também</title>
+    <refsection role="see also">
+        <title> Ver Também</title>
         <simplelist type="inline">
             <member>
                 <link linkend="gschur">gschur</link>
             </member>
             <member>
-                <link linkend="gspec">gspec</link>
+                <link linkend="spec">spec</link>
             </member>
             <member>
                 <link linkend="systmat">systmat</link>
index 734ae38..429b456 100644 (file)
@@ -2,7 +2,7 @@
 <!--
  * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
  * Copyright (C) 2008 - INRIA
- * 
+ *
  * Copyright (C) 2012 - 2016 - Scilab Enterprises
  *
  * This file is hereby licensed under the terms of the GNU GPL v2.0,
  * along with this program.
  *
  -->
-<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns5="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:id="quaskro" xml:lang="en">
+<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:ns5="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:id="quaskro" xml:lang="pt">
     <refnamediv>
         <refname>quaskro</refname>
         <refpurpose>forma quasi-Kronecker</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
-        <title> Seqüência de Chamamento </title>
-        <synopsis>[Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F)
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A)
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F,tol)
-            [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A,tol)
+        <title> Seqüência de Chamamento </title>
+        <synopsis>
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(F,tol)
+            [Q, Z, Qd, Zd, numbeps, numbeta] = quaskro(E,A,tol)
         </synopsis>
     </refsynopsisdiv>
-    <refsection>
-        <title>Parâmetros</title>
+    <refsection role="parameters">
+        <title>Parâmetros</title>
         <variablelist>
             <varlistentry>
                 <term>F</term>
             <varlistentry>
                 <term>E,A</term>
                 <listitem>
-                    <para>duas matrizes reais de iguais dimensões </para>
+                    <para>duas matrizes reais de iguais dimensões </para>
                 </listitem>
             </varlistentry>
             <varlistentry>
                 <term>tol</term>
                 <listitem>
-                    <para> número real (tolerância, valor padrão=1.d-10) </para>
+                    <para> número real (tolerância, valor padrão=1.d-10) </para>
                 </listitem>
             </varlistentry>
             <varlistentry>
             </varlistentry>
         </variablelist>
     </refsection>
-    <refsection>
-        <title>Descrição</title>
+    <refsection role="description">
+        <title>Descrição</title>
         <para>Forma quasi-Kronecker de um feixe de matrizes:
             <literal>quaskro</literal> computa duas matrizes ortogonais <literal>Q,
                 Z
             </literal>
-            que põem o feixe <literal>F=s*E -A</literal> na forma
+            que põem o feixe <literal>F=s*E -A</literal> na forma
             triangular superior:
         </para>
-        <programlisting role=""><![CDATA[ 
+        <screen><![CDATA[
            | sE(eps)-A(eps) |        X       |      X     |
            |----------------|----------------|------------|
            |        O       | sE(inf)-A(inf) |      X     |
 Q(sE-A)Z = |=================================|============|
            |                                 |            |
            |                O                | sE(r)-A(r) |
- ]]></programlisting>
-        <para>As dimensões dos blocos são dadas por:</para>
+ ]]></screen>
+        <para>As dimensões dos blocos são dadas por:</para>
         <para>
             <literal>eps=Qd(1) x Zd(1)</literal>, <literal>inf=Qd(2) x
                 Zd(2)
@@ -95,13 +96,13 @@ Q(sE-A)Z = |=================================|============|
             ,<literal>r = Qd(3) x Zd(3)</literal>
         </para>
         <para>
-            O bloco <literal>inf</literal> contém os modos infinitos do
+            O bloco <literal>inf</literal> contém os modos infinitos do
             feixe.
         </para>
         <para>
-            O bloco <literal>f</literal> contém os modos finitos do feixe
+            O bloco <literal>f</literal> contém os modos finitos do feixe
         </para>
-        <para>A estrutura dos blocos epsilon é dada por:</para>
+        <para>A estrutura dos blocos epsilon é dada por:</para>
         <para>
             <literal>numbeps(1)</literal> = <literal>#</literal> de blocos eps
             de tamanho 0 x 1
@@ -114,14 +115,14 @@ Q(sE-A)Z = |=================================|============|
             <literal>numbeps(3)</literal> = <literal>#</literal> de blocos eps
             de tamanho 2 x 3 etc...
         </para>
-        <para>A forma completa (de quatro blocos) de Kronecker é dada pela função
-            <literal>kroneck</literal> que chama a função <literal>quaskro</literal>
+        <para>A forma completa (de quatro blocos) de Kronecker é dada pela função
+            <literal>kroneck</literal> que chama a função <literal>quaskro</literal>
             sobre o feixe (pertransposto) <literal>sE(r)-A(r)</literal>.
         </para>
-        <para>O código é retirado de T. Beelen.</para>
+        <para>O código é retirado de T. Beelen.</para>
     </refsection>
-    <refsection>
-        <title> Ver Também</title>
+    <refsection role="see also">
+        <title> Ver Também</title>
         <simplelist type="inline">
             <member>
                 <link linkend="kroneck">kroneck</link>
@@ -130,7 +131,7 @@ Q(sE-A)Z = |=================================|============|
                 <link linkend="gschur">gschur</link>
             </member>
             <member>
-                <link linkend="gspec">gspec</link>
+                <link linkend="spec">spec</link>
             </member>
         </simplelist>
     </refsection>
index ba5f60a..8c600f1 100644 (file)
@@ -516,7 +516,6 @@ msgstr ""
 #
 # File: modules/linear_algebra/macros/gschur.sci, line: 24
 # File: modules/linear_algebra/macros/gschur.sci, line: 40
-# File: modules/linear_algebra/macros/gspec.sci, line: 16
 #, c-format
 msgid "%s: Obsolete function. Please replace '%s' by '%s'."
 msgstr ""
diff --git a/scilab/modules/linear_algebra/macros/gspec.sci b/scilab/modules/linear_algebra/macros/gspec.sci
deleted file mode 100644 (file)
index 656855e..0000000
+++ /dev/null
@@ -1,18 +0,0 @@
-
-// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
-// Copyright (C) ????-2008 - INRIA
-//
-// Copyright (C) 2012 - 2016 - Scilab Enterprises
-//
-// This file is hereby licensed under the terms of the GNU GPL v2.0,
-// pursuant to article 5.3.4 of the CeCILL v.2.1.
-// This file was originally licensed under the terms of the CeCILL v2.1,
-// and continues to be available under such terms.
-// For more information, see the COPYING file which you should have received
-// along with this program.
-
-function [al,be,Z]=gspec(A,B)
-    //For backward compatibility
-    warning(msprintf(gettext("%s: Obsolete function. Please replace ''%s'' by ''%s''."),"gspec","gspec","spec"));
-    [al,be,Z]=spec(A,B)
-endfunction