Improve the help page of derivat 57/11257/4
Alex Carneiro [Thu, 11 Apr 2013 08:15:05 +0000 (10:15 +0200)]
See http://usingscilab.blogspot.fr/2013/04/analytical-derivates-with-scilab.html
for the original article

Change-Id: I48bd28decb7389c3595f78ea0b088139c1085b67

scilab/modules/helptools/etc/images_md5.txt
scilab/modules/helptools/images/_LaTeX_derivat.xml_1.png [new file with mode: 0644]
scilab/modules/helptools/images/_LaTeX_derivat.xml_2.png [new file with mode: 0644]
scilab/modules/polynomials/help/en_US/derivat.xml
scilab/modules/polynomials/help/fr_FR/derivat.xml
scilab/modules/polynomials/help/ja_JP/derivat.xml
scilab/modules/polynomials/help/pt_BR/derivat.xml

index a9d3613..aaa6bf7 100644 (file)
@@ -343,6 +343,8 @@ _LaTeX_dct.xml_8.png=c0e3f553bdf2b00785d85a88c070d7ac
 _LaTeX_dct.xml_9.png=1e1e8ea97c8590c4f0cf49f45885bfdb
 _LaTeX_dct.xml_ja_JP_1.png=55a049b8f161ae7cfeb0197d75aff967
 _LaTeX_dct.xml_ja_JP_2.png=53d147e7f3fe6e47ee05b88b166bd3f6
+_LaTeX_derivat.xml_1.png=884753c7c6265a65bb3803b66a0fec59
+_LaTeX_derivat.xml_2.png=1f26913a320e0f43588894e762729d16
 _LaTeX_dst.xml_1.png=55a049b8f161ae7cfeb0197d75aff967
 _LaTeX_dst.xml_10.png=487b751549c27e45c6f346757a948f45
 _LaTeX_dst.xml_11.png=55a049b8f161ae7cfeb0197d75aff967
diff --git a/scilab/modules/helptools/images/_LaTeX_derivat.xml_1.png b/scilab/modules/helptools/images/_LaTeX_derivat.xml_1.png
new file mode 100644 (file)
index 0000000..3dab034
Binary files /dev/null and b/scilab/modules/helptools/images/_LaTeX_derivat.xml_1.png differ
diff --git a/scilab/modules/helptools/images/_LaTeX_derivat.xml_2.png b/scilab/modules/helptools/images/_LaTeX_derivat.xml_2.png
new file mode 100644 (file)
index 0000000..42e4d24
Binary files /dev/null and b/scilab/modules/helptools/images/_LaTeX_derivat.xml_2.png differ
index 93a7a27..adbfaa4 100644 (file)
@@ -13,7 +13,7 @@
 <refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" xmlns:scilab="http://www.scilab.org" xml:lang="en" xml:id="derivat">
     <refnamediv>
         <refname>derivat</refname>
-        <refpurpose>rational matrix derivative</refpurpose>
+        <refpurpose>Rational matrix derivative</refpurpose>
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
     <refsection>
         <title>Description</title>
         <para>
-            computes the derivative of the polynomial
-            or rational function matrix w.r.t the dummy variable.
+            The derivat() function works with expressions like
+            <latex>p(z) = \sum \limits_{i = -\infty}^{\infty} A_{i} z^{i}</latex>
+            which consists of functions of linear combinations with integer exponents of one variable (in the example denoted by z).
+        </para>
+        <para>
+            The function derivat() implements the analytical derivation of p(z), giving the following result.
+            <latex>\dfrac{d(p(z))}{d z} = \sum \limits_{i = -\infty}^{\infty} i A_{i} z^{i - 1}</latex>
         </para>
     </refsection>
     <refsection>
         <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 s=poly(0,'s');
 derivat(1/s)  // -1/s^2;
  ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p1 = poly([1 -2 1], 'x', 'coeff')
+derivat(p1)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p2 = poly([1 -4 2], 'y', 'coeff')
+derivat(p2)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p3 = poly(ones(1, 10), 'z', 'coeff')
+derivat(p3)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p4 = poly([-1 1], 't', 'roots')
+derivat(p4)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+s = %s; p5 = s^{-1} + 2 + 3*s
+derivat(p5)
+ ]]></programlisting>
     </refsection>
 </refentry>
index 2191c8d..fedb610 100644 (file)
     </refsection>
     <refsection>
         <title>Exemples</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 s=poly(0,'s');
 derivat(1/s)  // -1/s^2;
  ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p1 = poly([1 -2 1], 'x', 'coeff')
+derivat(p1)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p2 = poly([1 -4 2], 'y', 'coeff')
+derivat(p2)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p3 = poly(ones(1, 10), 'z', 'coeff')
+derivat(p3)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p4 = poly([-1 1], 't', 'roots')
+derivat(p4)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+s = %s; p5 = s^{-1} + 2 + 3*s
+derivat(p5)
+ ]]></programlisting>
     </refsection>
 </refentry>
index 2a9f8ee..4e1954a 100644 (file)
     </refsection>
     <refsection>
         <title>δΎ‹</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 s=poly(0,'s');
 derivat(1/s)  // -1/s^2;
  ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p1 = poly([1 -2 1], 'x', 'coeff')
+derivat(p1)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p2 = poly([1 -4 2], 'y', 'coeff')
+derivat(p2)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p3 = poly(ones(1, 10), 'z', 'coeff')
+derivat(p3)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p4 = poly([-1 1], 't', 'roots')
+derivat(p4)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+s = %s; p5 = s^{-1} + 2 + 3*s
+derivat(p5)
+ ]]></programlisting>
     </refsection>
 </refentry>
index 5040fa3..5977d4c 100644 (file)
     </refsection>
     <refsection>
         <title>Exemplos</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 s=poly(0,'s');
 derivat(1/s)  // -1/s^2;
  ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p1 = poly([1 -2 1], 'x', 'coeff')
+derivat(p1)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p2 = poly([1 -4 2], 'y', 'coeff')
+derivat(p2)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p3 = poly(ones(1, 10), 'z', 'coeff')
+derivat(p3)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+p4 = poly([-1 1], 't', 'roots')
+derivat(p4)
+ ]]></programlisting>
+        <programlisting role="example"><![CDATA[
+s = %s; p5 = s^{-1} + 2 + 3*s
+derivat(p5)
+ ]]></programlisting>
     </refsection>
 </refentry>