Revision of help pages for poly function after commit 19f65129f614e293dd5663e8f6e0ef0... 91/10291/2
Stanislav KROTER [Tue, 22 Jan 2013 15:10:03 +0000 (21:10 +0600)]
The phrase "rational fractions" in the Examples section on the French page must be translated.

Change-Id: Ib10838ea9bf114ff20393403a16fe9cfc842e89b

scilab/modules/polynomials/help/en_US/poly.xml
scilab/modules/polynomials/help/fr_FR/poly.xml
scilab/modules/polynomials/help/ru_RU/poly.xml

index 6fe2ff0..96e619e 100644 (file)
@@ -6,7 +6,7 @@
     </refnamediv>
     <refsynopsisdiv>
         <title>Calling Sequence</title>
-        <synopsis>p=poly(a,vname, ["flag"])</synopsis>
+        <synopsis>p = poly(a, vname, ["flag"])</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Arguments</title>
             <varlistentry>
                 <term>a</term>
                 <listitem>
-                    <para>matrix or real number</para>
+                    <para>a matrix or real number</para>
                 </listitem>
             </varlistentry>
             <varlistentry>
                 <term>vname</term>
                 <listitem>
-                    <para>String, the symbolic variable name. The string must be 4 characters max.
+                    <para>a string, the symbolic variable name. The string must be 4 characters max.
                     </para>
                 </listitem>
             </varlistentry>
             <varlistentry>
-                <term>"flag"  </term>
+                <term>"flag"</term>
                 <listitem>
                     <para>
-                        string ("roots", "coeff"), default value is <literal>"roots"</literal>.
+                        string (<literal>"roots"</literal>, <literal>"coeff"</literal>),
+                        default value is <literal>"roots"</literal>.
                     </para>
                     <para>
                         Shortcuts can be also used: <literal>"r"</literal> for <literal>"roots"</literal> and <literal>"c"</literal> for <literal>"coeff"</literal>.
                 </term>
                 <listitem>
                     <para>
-                        <literal>p</literal> is the characteristic
-                        polynomial i.e. <literal>determinant(x*eye()-a)</literal>, <literal>x</literal> being
+                        <varname>p</varname> is the characteristic
+                        polynomial i.e. <code>determinant(x*eye()-a)</code>, <literal>x</literal> being
                         the symbolic variable.
                     </para>
                 </listitem>
             </varlistentry>
             <varlistentry>
-                <term>If v is a vector,</term>
+                <term>If <literal>v</literal> is a vector,</term>
                 <listitem>
                     <itemizedlist>
                         <listitem>
                             <para>
-                                <literal>poly(v,"x",["roots"])</literal>  is the polynomial
-                                with <literal>roots</literal> the entries of <literal>v</literal> and
+                                <code>poly(v,"x",["roots"])</code>  is the polynomial
+                                with <literal>roots</literal> the entries of <varname>v</varname> and
                                 <literal>"x"</literal> as formal variable. (In this case,
-                                <literal>roots</literal> and   <literal>poly</literal> are inverse functions). 
-                                Note that Infinite roots gives zero  highest degree coefficients. 
+                                <function>roots</function> and   <function>poly</function> are inverse functions).
+                                <note>
+                                    Note that Infinite roots gives zero  highest degree coefficients.
+                                </note>
                             </para>
                         </listitem>
                         <listitem>
                             <para>
-                                <literal>poly(v,"x","coeff")</literal> creates the
+                                <code>poly(v,"x","coeff")</code> creates the
                                 polynomial with symbol <literal>"x"</literal> and with coefficients
-                                the entries of <literal>v</literal> (<literal>v(1)</literal> is the constant term 
-                                of the polynomial). (Here <literal>poly</literal> and <literal>coeff</literal> are 
+                                the entries of <varname>v</varname> (<code>v(1)</code> is the constant term
+                                of the polynomial). (Here <function>poly</function> and <function>coeff</function> are
                                 inverse functions).
                             </para>
                         </listitem>
             </varlistentry>
         </variablelist>
         <para>
-            <literal>s=poly(0,"s")</literal> is the seed for defining
+            <code>s=poly(0,"s")</code> is the seed for defining
             polynomials with symbol <literal>"s"</literal>.
         </para>
     </refsection>
     <refsection>
         <title>Examples</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 s=poly(0,"s");
 p=1+s+2*s^2
 A=rand(2,2);
index 909a8dc..7298076 100644 (file)
@@ -34,7 +34,7 @@
                     <para>
                         Des raccourcis peuvent être aussi utilisés: <literal>"r"</literal> pour <literal>"roots"</literal> et <literal>"c"</literal> pour <literal>"coeff"</literal>.
                     </para>
-                    
+
                 </listitem>
             </varlistentry>
         </variablelist>
@@ -49,7 +49,7 @@
                         <literal>p</literal> est le polynôme
                         caractéristique de a, c'est à dire
                         <literal>déterminant(x*eye()-a)</literal>, <literal>x</literal> étant
-                        l'indéterminée. 
+                        l'indéterminée.
                     </para>
                 </listitem>
             </varlistentry>
                                 dont les racines sont égales aux termes de <literal>v</literal> et
                                 <literal>"x"</literal> l'indéterminée. Dans ce cas
                                 <literal>roots</literal> et <literal>poly</literal> sont des fonctions inverses
-                                l'une de l'autre. Notez qye les racines infinies produisent des
-                                coefficients de haut degré egaux a zéro.
+                                l'une de l'autre.
+                                <note>
+                                    Notez qye les racines infinies produisent des
+                                    coefficients de haut degré egaux a zéro.
+                                </note>
                             </para>
                         </listitem>
                         <listitem>
     </refsection>
     <refsection>
         <title>Exemples</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 s=poly(0,"s");
 p=1+s+2*s^2
 A=rand(2,2);
 poly(A,"x")
+// Fractions rationnelles
+h=(1+2*%s)/poly(1:4,'s','c')
  ]]></programlisting>
     </refsection>
     <refsection role="see also">
index 3df932a..e0d2579 100644 (file)
@@ -6,7 +6,7 @@
     </refnamediv>
     <refsynopsisdiv>
         <title>Последовательность вызова</title>
-        <synopsis>p=poly(a,vname, ["flag"])</synopsis>
+        <synopsis>p = poly(a, vname, ["flag"])</synopsis>
     </refsynopsisdiv>
     <refsection>
         <title>Аргументы</title>
             <varlistentry>
                 <term>a</term>
                 <listitem>
-                    <para>матрица или вещественной число</para>
+                    <para>матрица или вещественное число</para>
                 </listitem>
             </varlistentry>
             <varlistentry>
                 <term>vname</term>
                 <listitem>
                     <para>
-                        Строка, имя символьной переменной. Если строка больше 4 символов, то из них 
+                        Строка, имя символьной переменной. Если строка больше 4 символов, то из них
                         учитываются только 4 первых.
                     </para>
                 </listitem>
             </varlistentry>
             <varlistentry>
-                <term>"flag"  </term>
+                <term>"flag"</term>
                 <listitem>
                     <para>
-                        строка ("roots", "coeff"), значение по умолчанию <literal>"roots"</literal>.
+                        символьная строка ( <literal>"roots"</literal>,
+                        <literal>"coeff"</literal>), значение по
+                        умолчанию <literal>"roots"</literal>.
+                    </para>
+                    <para>
+                        Также могут быть использованы сокращения:
+                        <literal>"r"</literal> для <literal>"roots"</literal>
+                        и <literal>"c"</literal>  для <literal>"coeff"</literal>.
                     </para>
                 </listitem>
             </varlistentry>
         <variablelist>
             <varlistentry>
                 <term>
-                    Если <literal>a</literal> -- матрица, то
+                    Если <literal>a</literal> - матрица, то
                 </term>
                 <listitem>
                     <para>
-                        <literal>p</literal> является характеристическим полиномом, то есть 
-                        <literal>determinant(x*eye()-a)</literal>, где <literal>x</literal> является 
+                        <varname>p</varname> является характеристическим полиномом, то есть
+                        <code>determinant(x*eye()-a)</code>, где <literal>x</literal> является
                         символьной переменной.
                     </para>
                 </listitem>
             </varlistentry>
             <varlistentry>
                 <term>
-                    Если <literal>v</literal> -- вектор, то
+                    Если <literal>v</literal> - вектор, то
                 </term>
                 <listitem>
                     <itemizedlist>
                         <listitem>
                             <para>
-                                <literal>poly(v,"x",["roots"])</literal> является полиномом с корнями 
-                                <literal>roots</literal>, элементами <literal>v</literal> и
+                                <code>poly(v,"x",["roots"])</code> является полиномом с корнями, хранящимися в элементах <varname>v</varname> и
                                 <literal>"x"</literal> в качестве формальной переменной. (В этом случае
-                                <literal>roots</literal> и <literal>poly</literal> являются обратными функциями). 
-                                Заметьте, что бесконечные корни дают нулевые коэффициенты наивысшей степени.
+                                <function>roots</function> и <function>poly</function> являются обратными функциями).
+                                <note>
+                                    Заметьте, что бесконечные корни дают нулевые коэффициенты наивысшей степени.
+                                </note>
                             </para>
                         </listitem>
                         <listitem>
                             <para>
-                                <literal>poly(v,"x","coeff")</literal> создаёт полином с символом  
-                                <literal>"x"</literal> и с коэффициентами, хранящимися в элементах 
-                                <literal>v</literal> (<literal>v(1)</literal> -- постоянный член полинома). Здесь
-                                <literal>poly</literal> и <literal>coeff</literal> являются обратными функциями.
+                                <code>poly(v,"x","coeff")</code> создаёт полином с символом
+                                <literal>"x"</literal> и с коэффициентами, хранящимися в элементах
+                                <varname>v</varname> (<code>v(1)</code> - постоянный член полинома). Здесь
+                                <function>poly</function> и <function>coeff</function> являются обратными функциями.
                             </para>
                         </listitem>
                     </itemizedlist>
             </varlistentry>
         </variablelist>
         <para>
-            <literal>s=poly(0,"s")</literal> является семенем для определения полиномов с символом 
+            <code>s=poly(0,"s")</code> является семенем для определения полиномов с символом
             <literal>"s"</literal>.
         </para>
     </refsection>
     <refsection>
         <title>Примеры</title>
-        <programlisting role="example"><![CDATA[ 
+        <programlisting role="example"><![CDATA[
 s=poly(0,"s");
 p=1+s+2*s^2
 A=rand(2,2);