From: Stanislav KROTER Date: Tue, 26 Mar 2013 16:33:01 +0000 (+0600) Subject: Revision help pages for bvode (en_US, ru_RU). X-Git-Tag: 5.4.1~93 X-Git-Url: http://gitweb.scilab.org/?p=scilab.git;a=commitdiff_plain;h=baf7ff4b6da3b5670426991e1ed38f95a03d2440 Revision help pages for bvode (en_US, ru_RU). Fixed some typos and changed the example "An eigenvalue problem". This example asked about n-th eigenvalue but did not wait the answer and, as a result, the graphic figure and the sample image were different. Change-Id: I4bbecf02e061a0907df459cc79517f3c81a66af4 --- diff --git a/scilab/modules/differential_equations/help/en_US/bvode.xml b/scilab/modules/differential_equations/help/en_US/bvode.xml index ae230cd..d9b5d35 100644 --- a/scilab/modules/differential_equations/help/en_US/bvode.xml +++ b/scilab/modules/differential_equations/help/en_US/bvode.xml @@ -56,7 +56,7 @@ N a scalar with integer value, number of differential equations - (N <= 20). + (N <= 20). @@ -213,7 +213,7 @@ = 0 - causes bvode to generate a uniform initial + causes bvode to generate a uniform initial mesh. @@ -228,12 +228,9 @@ = 1 - if the initial mesh is provided by the user. - it is defined in fspace as follows: the mesh + if the initial mesh is provided by the user it is defined in fspace as follows: the mesh will occupy fspace(1), ..., fspace(n+1). The user needs to supply only - the interior mesh points fspace(j) = x(j), - j = 2, ..., n. - + the interior mesh points fspace(j) = x(j),j = 2, ..., n. @@ -286,8 +283,8 @@ = 3 if a former mesh and approximate solution - coefficients are provided by the user in fspace , and the - new mesh is to be taken twice as coarse; i.e.,every + coefficients are provided by the user in fspace, and the + new mesh is to be taken twice as coarse; i.e. every second point from the former mesh. @@ -360,7 +357,7 @@ an array of dimension ntol=ipar(4). ltol(j) = l specifies that the j-th tolerance in - the tol array controls the error in the l-th + the tol array controls the error in the l-th component of @@ -375,8 +372,8 @@ - - . It is also required that: + . + It is also required that: 1 <= ltol(1) < ltol(2) < ... < ltol(ntol) @@ -532,7 +529,7 @@ x_up, which are to be included in every mesh. The code requires that all side condition points other than x_low and x_up (see - description of zeta ) be included as fixed points in + description of zeta) be included as fixed points in fixpnt. @@ -1431,7 +1428,7 @@ function [dmval,zu]=fsub(x,parameters) The problem 1 describes a - uniformy loaded beam of variable stifness, simply supported at both + uniformly loaded beam of variable stiffness, simply supported at both end. It may be defined as follow : @@ -2146,7 +2143,7 @@ xt=sqrt(2*(gam-1)/gam) fixpnt=[ ];//All boundary conditions are located at x_low and x_up collpnt=4; nsizef=4+3*M+(5+collpnt*N)*(collpnt*N+M)+(2*M-2)*2*M ; -nsizei=3 + collpnt*N+M;; +nsizei=3 + collpnt*N+M; nmax=200; // nonlin collpnt n ntol ndimf ndimi iprint iread iguess rstart nfxpnt ipar=[1 collpnt 10 4 nmax*nsizef nmax*nsizei -1 0 0 0 0 ] @@ -2222,7 +2219,8 @@ N=101; x=linspace(a,b,N)'; // We have s(n)-(n+1/2)*pi -> 0 for n to infinity. -la0=input('n-th eigenvalue: n= ?');la0=(%pi/2+la0*%pi)^2; +la0=evstr(x_dialog('n-th eigenvalue: n= ?','10')); +la0=(%pi/2+la0*%pi)^2; z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ystart=list(ystart,la0)); // The same call without any display @@ -2233,7 +2231,7 @@ z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ystart=list(ystart,la0),iprint=-1); clf() plot(x,[z(1,:)' z(2,:)']) xtitle(['Startvalue = '+string(la0);'Eigenvalue = '+string(z(3,1))],'x',' ') -legend(['y(x)';'y''(x)']) +legend(['y(x)';'y''(x)']); ]]> function rhs=fsub(x,z) diff --git a/scilab/modules/differential_equations/help/ru_RU/bvode.xml b/scilab/modules/differential_equations/help/ru_RU/bvode.xml index 1cb3d40..1322544 100644 --- a/scilab/modules/differential_equations/help/ru_RU/bvode.xml +++ b/scilab/modules/differential_equations/help/ru_RU/bvode.xml @@ -124,7 +124,7 @@ max(m(j)) <= collpnt <= 7. - ÐÑÐ»Ð¸ ipar(2)=0, ÑÐ¾ collpnt ÑÑÑÐ°Ð½Ð¾Ð²Ð»ÐµÐ½ ÑÐ°Ð²Ð½ÑÐ¼ max( max(m(j))+1, 5-max(m(j)) ). + ÐÑÐ»Ð¸ ipar(2)=0, ÑÐ¾ collpnt ÑÑÑÐ°Ð½Ð¾Ð²Ð»ÐµÐ½ ÑÐ°Ð²Ð½ÑÐ¼ max( max(m(j))+1, 5-max(m(j))). @@ -132,8 +132,7 @@ subint: ipar(3) - ÐÐ°Ð´Ð°ÑÑ ÐºÐ¾Ð»Ð¸ÑÐµÑÑÐ²Ð¾ Ð¿Ð¾Ð´ÑÐ½ÑÐµÑÐ²Ð°Ð»Ð¾Ð² Ð² Ð¸ÑÑÐ¾Ð´Ð½Ð¾Ð¹ ÑÐµÑÐºÐµ. ÐÑÐ»Ð¸ - ipar(3) = 0, ÑÐ¾ bvode Ð¿ÑÐ¾Ð¸Ð·Ð²Ð¾Ð»ÑÐ½ÑÐ¼ Ð¾Ð±ÑÐ°Ð·Ð¾Ð¼ ÑÑÑÐ°Ð½Ð°Ð²Ð»Ð¸Ð²Ð°ÐµÑÑÑ subint = 5. + ÐÐ°Ð´Ð°ÑÑ ÐºÐ¾Ð»Ð¸ÑÐµÑÑÐ²Ð¾ Ð¿Ð¾Ð´ÑÐ½ÑÐµÑÐ²Ð°Ð»Ð¾Ð² Ð² Ð¸ÑÑÐ¾Ð´Ð½Ð¾Ð¹ ÑÐµÑÐºÐµ. ÐÑÐ»Ð¸ ipar(3) = 0, ÑÐ¾ bvode Ð¿ÑÐ¾Ð¸Ð·Ð²Ð¾Ð»ÑÐ½ÑÐ¼ Ð¾Ð±ÑÐ°Ð·Ð¾Ð¼ ÑÑÑÐ°Ð½Ð°Ð²Ð»Ð¸Ð²Ð°ÐµÑÑÑ subint = 5. @@ -360,7 +359,7 @@ Ð¼Ð°ÑÑÐ¸Ð² ÑÐ°Ð·Ð¼ÐµÑÐ½Ð¾ÑÑÐ¸ ntol=ipar(4). ltol(j) = l Ð¾Ð¿ÑÐµÐ´ÐµÐ»ÑÐµÑ, ÑÑÐ¾ j-ÑÑÐ¹ Ð´Ð¾Ð¿ÑÑÐº Ð² Ð¼Ð°ÑÑÐ¸Ð²Ðµ - tol ÑÐ¿ÑÐ°Ð²Ð»ÑÐµÑ Ð¾ÑÐ¸Ð±ÐºÐ¾Ð¹ Ð² l-ÑÐ¾Ð¼ ÑÐ»ÐµÐ¼ÐµÐ½ÑÐµ + tol ÑÐ¿ÑÐ°Ð²Ð»ÑÐµÑ Ð¾ÑÐ¸Ð±ÐºÐ¾Ð¹ Ð² l-ÑÐ¾Ð¼ ÑÐ»ÐµÐ¼ÐµÐ½ÑÐµ @@ -374,8 +373,7 @@ - - . + . Ð¢Ð°ÐºÐ¶Ðµ ÑÑÐµÐ±ÑÐµÑÑÑ, ÑÑÐ¾Ð±Ñ: @@ -407,8 +405,8 @@ - - . Ð¢Ð°ÐºÐ¸Ð¼ Ð¾Ð±ÑÐ°Ð·Ð¾Ð¼ ÐºÐ¾Ð´ Ð¿ÑÑÐ°ÐµÑÑÑ ÑÐ´Ð¾Ð²Ð»ÐµÑÐ²Ð¾ÑÐ¸ÑÑ + . + Ð¢Ð°ÐºÐ¸Ð¼ Ð¾Ð±ÑÐ°Ð·Ð¾Ð¼ ÐºÐ¾Ð´ Ð¿ÑÑÐ°ÐµÑÑÑ ÑÐ´Ð¾Ð²Ð»ÐµÑÐ²Ð¾ÑÐ¸ÑÑ @@ -527,7 +525,7 @@ Ð¼Ð°ÑÑÐ¸Ð² ÑÐ°Ð·Ð¼ÐµÑÐ¾Ð¼ nfxpnt=ipar(11). ÐÐ½ ÑÐ¾Ð´ÐµÑÐ¶Ð¸Ñ ÑÐ¾ÑÐºÐ¸ Ð¾ÑÐ»Ð¸ÑÐ½ÑÐµ Ð¾Ñ x_low Ð¸ x_up, ÐºÐ¾ÑÐ¾ÑÑÐµ Ð½ÑÐ¶Ð½Ð¾ Ð²ÐºÐ»ÑÑÐ¸ÑÑ Ð²Ð¾ Ð²ÑÐµ - ÑÐµÑÐºÐ¸. ÐÐ¾Ð´ ÑÑÐµÐ±ÑÐµÑ, ÑÑÐ¾Ð±Ñ Ð²ÑÐµ ÑÐ¾ÑÐºÐ¸ Ð´Ð¾Ð¿Ð¾Ð»Ð½Ð¸ÑÐµÐ»ÑÐ½ÑÑ ÑÑÐ»Ð¾Ð²Ð¸Ð¹, Ð¾ÑÐ»Ð¸ÑÐ½ÑÐµ Ð¾Ñ + ÑÐµÑÐºÐ¸. ÐÐ¾Ð´ ÑÑÐµÐ±ÑÐµÑ, ÑÑÐ¾Ð±Ñ Ð²ÑÐµ ÑÐ¾ÑÐºÐ¸ Ð´Ð¾Ð¿Ð¾Ð»Ð½Ð¸ÑÐµÐ»ÑÐ½ÑÑ ÑÑÐ»Ð¾Ð²Ð¸Ð¹, Ð¾ÑÐ»Ð¸ÑÐ½ÑÐµ Ð¾Ñ x_low Ð¸ x_up (ÑÐ¼. Ð¾Ð¿Ð¸ÑÐ°Ð½Ð¸Ðµ zeta ) Ð±ÑÐ»Ð¸ Ð²ÐºÐ»ÑÑÐµÐ½Ñ Ð² ÐºÐ°ÑÐµÑÑÐ²Ðµ ÑÐ¸ÐºÑÐ¸ÑÐ¾Ð²Ð°Ð½Ð½ÑÑ ÑÐ¾ÑÐµÐº Ð² fixpnt. @@ -1795,7 +1793,7 @@ function dg=dgsub(i,z) end endfunction -// - Ð¤ÑÐ½ÐºÑÐ¸Ñ, ÐºÐ¾ÑÐ¾ÑÐ°Ñ Ð²ÑÑÐ¸ÑÐ»ÑÐµÑ Ð½Ð°ÑÐ°Ð»ÑÐ½Ð¾Ðµ Ð¿ÑÐµÐ´Ð¿Ð¾Ð»Ð¾Ð¶ÐµÐ½Ð¸Ðµ, Ð·Ð´ÐµÑÑ Ð½Ðµ Ð¸ÑÐ¿Ð¾Ð»ÑÐ·ÑÐµÑÑÑ +// - Ð¤ÑÐ½ÐºÑÐ¸Ñ, ÐºÐ¾ÑÐ¾ÑÐ°Ñ Ð²ÑÑÐ¸ÑÐ»ÑÐµÑ Ð½Ð°ÑÐ°Ð»ÑÐ½Ð¾Ðµ Ð¿ÑÐµÐ´Ð¿Ð¾Ð»Ð¾Ð¶ÐµÐ½Ð¸Ðµ, Ð·Ð´ÐµÑÑ Ð½Ðµ Ð¸ÑÐ¿Ð¾Ð»ÑÐ·ÑÐµÐ¼Ð¾Ðµ function [zu,mpar]=guess(x) zu=0; mpar=0; @@ -1812,8 +1810,8 @@ endfunction fixpnt=[ ];//ÐÑÐµ Ð³ÑÐ°Ð½Ð¸ÑÐ½ÑÐµ ÑÑÐ»Ð¾Ð²Ð¸Ñ Ð½Ð°ÑÐ¾Ð´ÑÑÑÑ Ð² x_low Ð¸ x_up -// nonlin collpnt n ntol ndimf ndimi iprint iread iguess rstart nfxpnt -+ipar=[1 collpnt 10 4 nmax*nsizef nmax*nsizei -1 0 0 0 0 ] +// nonlin collpnt n ntol ndimf ndimi iprint iread iguess rstart nfxpnt +ipar=[0 0 1 2 2000 200 1 0 0 0 0 ] ltol=[1,3];//ÑÑÑÐ°Ð½Ð¾Ð²ÐºÐ° ÐºÐ¾Ð½ÑÑÐ¾Ð»Ñ Ð´Ð¾Ð¿ÑÑÐºÐ° Ð½Ð° zu(1) Ð¸ zu(3) tol=[1.e-11,1.e-11];//ÑÑÑÐ°Ð½Ð¾Ð²ÐºÐ° Ð·Ð½Ð°ÑÐµÐ½Ð¸Ð¹ Ð´Ð¾Ð¿ÑÑÐºÐ° Ð´Ð»Ñ ÐºÐ¾Ð½ÑÑÐ¾Ð»Ñ Ð´Ð¾Ð¿ÑÑÐºÐ° @@ -2129,16 +2127,16 @@ xt=sqrt(2*(gam-1)/gam) fixpnt=[ ];// Ð²ÑÐµ Ð³ÑÐ°Ð½Ð¸ÑÐ½ÑÐµ ÑÑÐ»Ð¾Ð²Ð¸Ñ ÑÐ°Ð·Ð¼ÐµÑÐµÐ½Ñ Ð² x_low Ð¸ x_up collpnt=4; nsizef=4+3*M+(5+collpnt*N)*(collpnt*N+M)+(2*M-2)*2*M ; -nsizei=3 + collpnt*N+M;; +nsizei=3 + collpnt*N+M; nmax=200; // nonlin collpnt n ntol ndimf ndimi iprint iread iguess rstart nfxpnt -ipar=[1 k 10 4 nmax*nsizef nmax*nsizei -1 0 0 0 0 ] +ipar=[1 collpnt 10 4 nmax*nsizef nmax*nsizei -1 0 0 0 0 ] ltol=1:4;//ÑÑÑÐ°Ð½Ð¾Ð²ÐºÐ° ÐºÐ¾Ð½ÑÑÐ¾Ð»Ñ Ð´Ð¾Ð¿ÑÑÐºÐ¾Ð² Ð½Ð° zu(1), zu(2), zu(3) Ð¸ zu(4) -tol=[1.e-5,1.e-5,1.e-5,1.e-5];//ÑÑÑÐ°Ð½Ð¾Ð²ÐºÐ° Ð·Ð½Ð°ÑÐµÐ½Ð¸Ð¹ Ð´Ð»Ñ ÐºÐ¾Ð½ÑÑÐ¾Ð»Ñ Ð´Ð¾Ð¿ÑÑÐºÐ¾Ð² +tol=[1.e-5,1.e-5,1.e-5,1.e-5];//ÑÑÑÐ°Ð½Ð¾Ð²ÐºÐ° Ð·Ð½Ð°ÑÐµÐ½Ð¸Ð¹ Ð´Ð¾Ð¿ÑÑÐºÐ¾Ð² Ð´Ð»Ñ ÑÑÐ¸Ñ ÑÐµÑÑÑÑÑ Ð·Ð½Ð°ÑÐµÐ½Ð¸Ð¹ ÐºÐ¾Ð½ÑÑÐ¾Ð»Ñ xpoints=x_low:0.01:x_up; -// - Ð¤ÑÐ½ÐºÑÐ¸Ñ, ÐºÐ¾ÑÐ¾ÑÐ°Ñ Ð²ÑÑÐ¸ÑÐ»ÑÐµÑ Ð½Ð°ÑÐ°Ð»ÑÐ½Ð¾Ðµ Ð¿ÑÐµÐ´Ð¿Ð¾Ð»Ð¾Ð¶ÐµÐ½Ð¸Ðµ, Ð·Ð´ÐµÑÑ Ð½Ðµ Ð¸ÑÐ¿Ð¾Ð»ÑÐ·ÑÐµÑÑÑ +// - Ð¤ÑÐ½ÐºÑÐ¸Ñ, ÐºÐ¾ÑÐ¾ÑÐ°Ñ Ð²ÑÑÐ¸ÑÐ»ÑÐµÑ Ð½Ð°ÑÐ°Ð»ÑÐ½Ð¾Ðµ Ð¿ÑÐµÐ´Ð¿Ð¾Ð»Ð¾Ð¶ÐµÐ½Ð¸Ðµ, Ð·Ð´ÐµÑÑ Ð½Ðµ Ð¸ÑÐ¿Ð¾Ð»ÑÐ·ÑÐµÐ¼Ð¾Ðµ function [zu,dmval]=guess2(x,gam), cons=gam*x*(1-x^2/2) dcons=gam*(1-3*x^2/2) @@ -2204,8 +2202,9 @@ zeta=[a a b]; N=101; x=linspace(a,b,N)'; -//ÐÐ¼ÐµÐµÐ¼ s(n)-(n+1/2)*pi -> 0 Ð´Ð»Ñ n, ÑÑÑÐµÐ¼ÑÑÐ¸Ð¼ÑÑ Ðº Ð±ÐµÑÐºÐ¾Ð½ÐµÑÐ½Ð¾ÑÑÐ¸. -la0=input('n-Ð½Ð¾Ðµ ÑÐ¾Ð±ÑÑÐ²ÐµÐ½Ð½Ð¾Ðµ Ð·Ð½Ð°ÑÐµÐ½Ð¸Ðµ: n= ?');la0=(%pi/2+la0*%pi)^2; +//ÐÐ¼ÐµÐµÐ¼ s(n)-(n+1/2)*pi -> 0 Ð´Ð»Ñ n, ÑÑÑÐµÐ¼ÑÑÐµÐ¼ÑÑ Ðº Ð±ÐµÑÐºÐ¾Ð½ÐµÑÐ½Ð¾ÑÑÐ¸. +la0=evstr(x_dialog('n-Ð½Ð¾Ðµ ÑÐ¾Ð±ÑÑÐ²ÐµÐ½Ð½Ð¾Ðµ Ð·Ð½Ð°ÑÐµÐ½Ð¸Ðµ: n= ?','10')); +la0=(%pi/2+la0*%pi)^2; z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ystart=list(ystart,la0)); // Ð¢Ð¾Ñ Ð¶Ðµ Ð²ÑÐ·Ð¾Ð² Ð±ÐµÐ· Ð²ÑÐ²Ð¾Ð´Ð° Ð½Ð° ÑÐºÑÐ°Ð½ @@ -2216,7 +2215,7 @@ z=bvodeS(x,m,n,a,b,fsub,gsub,zeta,ystart=list(ystart,la0),iprint=-1); clf() plot(x,[z(1,:)' z(2,:)']) xtitle(['ÐÐ°ÑÐ°Ð»ÑÐ½Ð¾Ðµ Ð·Ð½Ð°ÑÐµÐ½Ð¸Ðµ = '+string(la0);'Ð¡Ð¾Ð±ÑÑÐ²ÐµÐ½Ð½Ð¾Ðµ Ð·Ð½Ð°ÑÐµÐ½Ð¸Ðµ = '+string(z(3,1))],'x',' ') -legend(['y(x)';'y''(x)']) +legend(['y(x)';'y''(x)']); ]]> function rhs=fsub(x,z)