From fdaaec8dc7b14d8d2ba08fca5dc68ae972d0a7c1 Mon Sep 17 00:00:00 2001 From: Stanislav KROTER Date: Tue, 22 Jan 2013 21:10:03 +0600 Subject: [PATCH] Revision of help pages for poly function after commit 19f65129f614e293dd5663e8f6e0ef0e2f9a8dcf. The phrase "rational fractions" in the Examples section on the French page must be translated. Change-Id: Ib10838ea9bf114ff20393403a16fe9cfc842e89b --- scilab/modules/polynomials/help/en_US/poly.xml | 37 ++++++++++--------- scilab/modules/polynomials/help/fr_FR/poly.xml | 15 +++++--- scilab/modules/polynomials/help/ru_RU/poly.xml | 46 ++++++++++++++---------- 3 files changed, 57 insertions(+), 41 deletions(-) diff --git a/scilab/modules/polynomials/help/en_US/poly.xml b/scilab/modules/polynomials/help/en_US/poly.xml index 6fe2ff0..96e619e 100644 --- a/scilab/modules/polynomials/help/en_US/poly.xml +++ b/scilab/modules/polynomials/help/en_US/poly.xml @@ -6,7 +6,7 @@ Calling Sequence - p=poly(a,vname, ["flag"]) + p = poly(a, vname, ["flag"]) Arguments @@ -14,21 +14,22 @@ a - matrix or real number + a matrix or real number vname - String, the symbolic variable name. The string must be 4 characters max. + a string, the symbolic variable name. The string must be 4 characters max. - "flag" + "flag" - string ("roots", "coeff"), default value is "roots". + string ("roots", "coeff"), + default value is "roots". Shortcuts can be also used: "r" for "roots" and "c" for "coeff". @@ -46,31 +47,33 @@ - p is the characteristic - polynomial i.e. determinant(x*eye()-a), x being + p is the characteristic + polynomial i.e. `determinant(x*eye()-a)`, x being the symbolic variable. - If v is a vector, + If v is a vector, - poly(v,"x",["roots"]) is the polynomial - with roots the entries of v and + `poly(v,"x",["roots"])` is the polynomial + with roots the entries of v and "x" as formal variable. (In this case, - roots and poly are inverse functions). - Note that Infinite roots gives zero highest degree coefficients. + roots and poly are inverse functions). + + Note that Infinite roots gives zero highest degree coefficients. + - poly(v,"x","coeff") creates the + `poly(v,"x","coeff")` creates the polynomial with symbol "x" and with coefficients - the entries of v (v(1) is the constant term - of the polynomial). (Here poly and coeff are + the entries of v (`v(1)` is the constant term + of the polynomial). (Here poly and coeff are inverse functions). @@ -79,13 +82,13 @@ - s=poly(0,"s") is the seed for defining + `s=poly(0,"s")` is the seed for defining polynomials with symbol "s". Examples - Des raccourcis peuvent Ãªtre aussi utilisÃ©s: "r" pour "roots" et "c" pour "coeff". - + @@ -49,7 +49,7 @@ p est le polynÃ´me caractÃ©ristique de a, c'est Ã  dire dÃ©terminant(x*eye()-a), x Ã©tant - l'indÃ©terminÃ©e. + l'indÃ©terminÃ©e. @@ -63,8 +63,11 @@ dont les racines sont Ã©gales aux termes de v et "x" l'indÃ©terminÃ©e. Dans ce cas roots et poly sont des fonctions inverses - l'une de l'autre. Notez qye les racines infinies produisent des - coefficients de haut degrÃ© egaux a zÃ©ro. + l'une de l'autre. + + Notez qye les racines infinies produisent des + coefficients de haut degrÃ© egaux a zÃ©ro. + @@ -87,11 +90,13 @@ Exemples - diff --git a/scilab/modules/polynomials/help/ru_RU/poly.xml b/scilab/modules/polynomials/help/ru_RU/poly.xml index 3df932a..e0d2579 100644 --- a/scilab/modules/polynomials/help/ru_RU/poly.xml +++ b/scilab/modules/polynomials/help/ru_RU/poly.xml @@ -6,7 +6,7 @@ ÐÐ¾ÑÐ»ÐµÐ´Ð¾Ð²Ð°ÑÐµÐ»ÑÐ½Ð¾ÑÑÑ Ð²ÑÐ·Ð¾Ð²Ð° - p=poly(a,vname, ["flag"]) + p = poly(a, vname, ["flag"]) ÐÑÐ³ÑÐ¼ÐµÐ½ÑÑ @@ -14,23 +14,30 @@ a - Ð¼Ð°ÑÑÐ¸ÑÐ° Ð¸Ð»Ð¸ Ð²ÐµÑÐµÑÑÐ²ÐµÐ½Ð½Ð¾Ð¹ ÑÐ¸ÑÐ»Ð¾ + Ð¼Ð°ÑÑÐ¸ÑÐ° Ð¸Ð»Ð¸ Ð²ÐµÑÐµÑÑÐ²ÐµÐ½Ð½Ð¾Ðµ ÑÐ¸ÑÐ»Ð¾ vname - Ð¡ÑÑÐ¾ÐºÐ°, Ð¸Ð¼Ñ ÑÐ¸Ð¼Ð²Ð¾Ð»ÑÐ½Ð¾Ð¹ Ð¿ÐµÑÐµÐ¼ÐµÐ½Ð½Ð¾Ð¹. ÐÑÐ»Ð¸ ÑÑÑÐ¾ÐºÐ° Ð±Ð¾Ð»ÑÑÐµ 4 ÑÐ¸Ð¼Ð²Ð¾Ð»Ð¾Ð², ÑÐ¾ Ð¸Ð· Ð½Ð¸Ñ + Ð¡ÑÑÐ¾ÐºÐ°, Ð¸Ð¼Ñ ÑÐ¸Ð¼Ð²Ð¾Ð»ÑÐ½Ð¾Ð¹ Ð¿ÐµÑÐµÐ¼ÐµÐ½Ð½Ð¾Ð¹. ÐÑÐ»Ð¸ ÑÑÑÐ¾ÐºÐ° Ð±Ð¾Ð»ÑÑÐµ 4 ÑÐ¸Ð¼Ð²Ð¾Ð»Ð¾Ð², ÑÐ¾ Ð¸Ð· Ð½Ð¸Ñ ÑÑÐ¸ÑÑÐ²Ð°ÑÑÑÑ ÑÐ¾Ð»ÑÐºÐ¾ 4 Ð¿ÐµÑÐ²ÑÑ. - "flag" + "flag" - ÑÑÑÐ¾ÐºÐ° ("roots", "coeff"), Ð·Ð½Ð°ÑÐµÐ½Ð¸Ðµ Ð¿Ð¾ ÑÐ¼Ð¾Ð»ÑÐ°Ð½Ð¸Ñ "roots". + ÑÐ¸Ð¼Ð²Ð¾Ð»ÑÐ½Ð°Ñ ÑÑÑÐ¾ÐºÐ° ( "roots", + "coeff"), Ð·Ð½Ð°ÑÐµÐ½Ð¸Ðµ Ð¿Ð¾ + ÑÐ¼Ð¾Ð»ÑÐ°Ð½Ð¸Ñ "roots". + + + Ð¢Ð°ÐºÐ¶Ðµ Ð¼Ð¾Ð³ÑÑ Ð±ÑÑÑ Ð¸ÑÐ¿Ð¾Ð»ÑÐ·Ð¾Ð²Ð°Ð½Ñ ÑÐ¾ÐºÑÐ°ÑÐµÐ½Ð¸Ñ: + "r" Ð´Ð»Ñ "roots" + Ð¸ "c" Ð´Ð»Ñ "coeff". @@ -41,37 +48,38 @@ - ÐÑÐ»Ð¸ a -- Ð¼Ð°ÑÑÐ¸ÑÐ°, ÑÐ¾ + ÐÑÐ»Ð¸ a - Ð¼Ð°ÑÑÐ¸ÑÐ°, ÑÐ¾ - p ÑÐ²Ð»ÑÐµÑÑÑ ÑÐ°ÑÐ°ÐºÑÐµÑÐ¸ÑÑÐ¸ÑÐµÑÐºÐ¸Ð¼ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼Ð¾Ð¼, ÑÐ¾ ÐµÑÑÑ - determinant(x*eye()-a), Ð³Ð´Ðµ x ÑÐ²Ð»ÑÐµÑÑÑ + p ÑÐ²Ð»ÑÐµÑÑÑ ÑÐ°ÑÐ°ÐºÑÐµÑÐ¸ÑÑÐ¸ÑÐµÑÐºÐ¸Ð¼ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼Ð¾Ð¼, ÑÐ¾ ÐµÑÑÑ + `determinant(x*eye()-a)`, Ð³Ð´Ðµ x ÑÐ²Ð»ÑÐµÑÑÑ ÑÐ¸Ð¼Ð²Ð¾Ð»ÑÐ½Ð¾Ð¹ Ð¿ÐµÑÐµÐ¼ÐµÐ½Ð½Ð¾Ð¹. - ÐÑÐ»Ð¸ v -- Ð²ÐµÐºÑÐ¾Ñ, ÑÐ¾ + ÐÑÐ»Ð¸ v - Ð²ÐµÐºÑÐ¾Ñ, ÑÐ¾ - poly(v,"x",["roots"]) ÑÐ²Ð»ÑÐµÑÑÑ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼Ð¾Ð¼ Ñ ÐºÐ¾ÑÐ½ÑÐ¼Ð¸ - roots, ÑÐ»ÐµÐ¼ÐµÐ½ÑÐ°Ð¼Ð¸ v Ð¸ + `poly(v,"x",["roots"])` ÑÐ²Ð»ÑÐµÑÑÑ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼Ð¾Ð¼ Ñ ÐºÐ¾ÑÐ½ÑÐ¼Ð¸, ÑÑÐ°Ð½ÑÑÐ¸Ð¼Ð¸ÑÑ Ð² ÑÐ»ÐµÐ¼ÐµÐ½ÑÐ°Ñ v Ð¸ "x" Ð² ÐºÐ°ÑÐµÑÑÐ²Ðµ ÑÐ¾ÑÐ¼Ð°Ð»ÑÐ½Ð¾Ð¹ Ð¿ÐµÑÐµÐ¼ÐµÐ½Ð½Ð¾Ð¹. (Ð ÑÑÐ¾Ð¼ ÑÐ»ÑÑÐ°Ðµ - roots Ð¸ poly ÑÐ²Ð»ÑÑÑÑÑ Ð¾Ð±ÑÐ°ÑÐ½ÑÐ¼Ð¸ ÑÑÐ½ÐºÑÐ¸ÑÐ¼Ð¸). - ÐÐ°Ð¼ÐµÑÑÑÐµ, ÑÑÐ¾ Ð±ÐµÑÐºÐ¾Ð½ÐµÑÐ½ÑÐµ ÐºÐ¾ÑÐ½Ð¸ Ð´Ð°ÑÑ Ð½ÑÐ»ÐµÐ²ÑÐµ ÐºÐ¾ÑÑÑÐ¸ÑÐ¸ÐµÐ½ÑÑ Ð½Ð°Ð¸Ð²ÑÑÑÐµÐ¹ ÑÑÐµÐ¿ÐµÐ½Ð¸. + roots Ð¸ poly ÑÐ²Ð»ÑÑÑÑÑ Ð¾Ð±ÑÐ°ÑÐ½ÑÐ¼Ð¸ ÑÑÐ½ÐºÑÐ¸ÑÐ¼Ð¸). + + ÐÐ°Ð¼ÐµÑÑÑÐµ, ÑÑÐ¾ Ð±ÐµÑÐºÐ¾Ð½ÐµÑÐ½ÑÐµ ÐºÐ¾ÑÐ½Ð¸ Ð´Ð°ÑÑ Ð½ÑÐ»ÐµÐ²ÑÐµ ÐºÐ¾ÑÑÑÐ¸ÑÐ¸ÐµÐ½ÑÑ Ð½Ð°Ð¸Ð²ÑÑÑÐµÐ¹ ÑÑÐµÐ¿ÐµÐ½Ð¸. + - poly(v,"x","coeff") ÑÐ¾Ð·Ð´Ð°ÑÑ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼ Ñ ÑÐ¸Ð¼Ð²Ð¾Ð»Ð¾Ð¼ - "x" Ð¸ Ñ ÐºÐ¾ÑÑÑÐ¸ÑÐ¸ÐµÐ½ÑÐ°Ð¼Ð¸, ÑÑÐ°Ð½ÑÑÐ¸Ð¼Ð¸ÑÑ Ð² ÑÐ»ÐµÐ¼ÐµÐ½ÑÐ°Ñ - v (v(1) -- Ð¿Ð¾ÑÑÐ¾ÑÐ½Ð½ÑÐ¹ ÑÐ»ÐµÐ½ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼Ð°). ÐÐ´ÐµÑÑ - poly Ð¸ coeff ÑÐ²Ð»ÑÑÑÑÑ Ð¾Ð±ÑÐ°ÑÐ½ÑÐ¼Ð¸ ÑÑÐ½ÐºÑÐ¸ÑÐ¼Ð¸. + `poly(v,"x","coeff")` ÑÐ¾Ð·Ð´Ð°ÑÑ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼ Ñ ÑÐ¸Ð¼Ð²Ð¾Ð»Ð¾Ð¼ + "x" Ð¸ Ñ ÐºÐ¾ÑÑÑÐ¸ÑÐ¸ÐµÐ½ÑÐ°Ð¼Ð¸, ÑÑÐ°Ð½ÑÑÐ¸Ð¼Ð¸ÑÑ Ð² ÑÐ»ÐµÐ¼ÐµÐ½ÑÐ°Ñ + v (`v(1)` - Ð¿Ð¾ÑÑÐ¾ÑÐ½Ð½ÑÐ¹ ÑÐ»ÐµÐ½ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼Ð°). ÐÐ´ÐµÑÑ + poly Ð¸ coeff ÑÐ²Ð»ÑÑÑÑÑ Ð¾Ð±ÑÐ°ÑÐ½ÑÐ¼Ð¸ ÑÑÐ½ÐºÑÐ¸ÑÐ¼Ð¸. @@ -79,13 +87,13 @@ - s=poly(0,"s") ÑÐ²Ð»ÑÐµÑÑÑ ÑÐµÐ¼ÐµÐ½ÐµÐ¼ Ð´Ð»Ñ Ð¾Ð¿ÑÐµÐ´ÐµÐ»ÐµÐ½Ð¸Ñ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼Ð¾Ð² Ñ ÑÐ¸Ð¼Ð²Ð¾Ð»Ð¾Ð¼ + `s=poly(0,"s")` ÑÐ²Ð»ÑÐµÑÑÑ ÑÐµÐ¼ÐµÐ½ÐµÐ¼ Ð´Ð»Ñ Ð¾Ð¿ÑÐµÐ´ÐµÐ»ÐµÐ½Ð¸Ñ Ð¿Ð¾Ð»Ð¸Ð½Ð¾Ð¼Ð¾Ð² Ñ ÑÐ¸Ð¼Ð²Ð¾Ð»Ð¾Ð¼ "s". ÐÑÐ¸Ð¼ÐµÑÑ -